# FLOOD INSURANCE STUDY FEDERAL EMERGENCY MANAGEMENT AGENCY

# VOLUME 1 OF 3



# MADISON COUNTY, ILLINOIS AND INCORPORATED AREAS

| COMMUNITY NAME            | NUMBER | COMMUNITY NAME                          | NUMBER |
|---------------------------|--------|-----------------------------------------|--------|
| ALHAMBRA, VILLAGE OF      | 170270 | MADISON, CITY OF                        | 170446 |
| ALTON, CITY OF            | 170437 | MADISON COUNTY,<br>UNINCORPORATED AREAS | 170436 |
| BETHALTO, VILLAGE OF      | 170438 | MARINE, VILLAGE OF                      | 170199 |
| COLLINSVILLE, CITY OF     | 170439 | MARYVILLE, VILLAGE OF                   | 170299 |
| EAST ALTON, VILLAGE OF    | 170440 | NEW DOUGLAS, VILLAGE OF*                | 170316 |
| EDWARDSVILLE, CITY OF     | 170441 | PIERRON, VILLAGE OF                     | 170317 |
| FAIRMONT CITY, VILLAGE OF | 170627 | PONTOON BEACH, VILLAGE OF               | 170447 |
| GLEN CARBON, VILLAGE OF   | 170442 | ROXANA, VILLAGE OF                      | 170448 |
| GODFREY, VILLAGE OF       | 171031 | SOUTH ROXANA, VILLAGE OF                | 170449 |
| GRANITE CITY, CITY OF     | 170443 | ST. JACOB, VILLAGE OF*                  | 170208 |
| GRANTFORK, VILLAGE OF     | 170209 | TROY, CITY OF                           | 170255 |
| HAMEL, VILLAGE OF         | 170160 | VENICE, CITY OF                         | 170450 |
| HARTFORD, VILLAGE OF      | 170444 | WILLIAMSON, VILLAGE OF                  | 170324 |
| HIGHLAND, CITY OF         | 170445 | WOOD RIVER, CITY OF                     | 170451 |
| LIVINGSTON, VILLAGE OF    | 170794 | WORDEN, VILLAGE OF*                     | 170825 |
| *NL O                     |        |                                         |        |

\*No Special Flood Hazard Areas Identified

### Preliminary: August 10, 2022



### TBD

FLOOD INSURANCE STUDY NUMBER 17119CV001A Version Number 2.6.5.0



# TABLE OF CONTENTS

### Volume 1

| SECT | ION 1.0 – INTRODUCTION                                      | 1  |
|------|-------------------------------------------------------------|----|
| 1.1  | The National Flood Insurance Program                        | 1  |
| 1.2  | Purpose of this Flood Insurance Study Report                | 2  |
| 1.3  | Jurisdictions Included in the Flood Insurance Study Project | 2  |
| 1.4  | Considerations for using this Flood Insurance Study Report  | 8  |
| SECT | ON 2.0 – FLOODPLAIN MANAGEMENT APPLICATIONS                 | 19 |
| 2.1  | Floodplain Boundaries                                       | 19 |
| 2.2  | Floodways                                                   | 30 |
| 2.3  | Base Flood Elevations                                       | 31 |
| 2.4  | Non-Encroachment Zones                                      | 32 |
| 2.5  | Coastal Flood Hazard Areas                                  | 32 |
|      | 2.5.1 Water Elevations and the Effects of Waves             | 32 |
|      | 2.5.2 Floodplain Boundaries and BFEs for Coastal Areas      | 32 |
|      | 2.5.3 Coastal High Hazard Areas                             | 32 |
|      | 2.5.4 Limit of Moderate Wave Action                         | 32 |
| SECT | ION 3.0 – INSURANCE APPLICATIONS                            | 33 |
| 3.1  | National Flood Insurance Program Insurance Zones            | 33 |
| SECT | ION 4.0 – AREA STUDIED                                      | 34 |
| 4.1  | Basin Description                                           | 34 |
| 4.2  | Principal Flood Problems                                    | 34 |
| 4.3  |                                                             | 35 |
| 4.4  | Levee Systems                                               | 35 |
| SECT | ON 5.0 – ENGINEERING METHODS                                | 39 |
| 5.1  | Hydrologic Analyses                                         | 39 |
| 5.2  | , , , , , , , , , , , , , , , , , , ,                       | 53 |
| 5.3  | Coastal Analyses                                            | 64 |
|      | 5.3.1 Total Stillwater Elevations                           | 64 |
|      | 5.3.2 Waves                                                 | 64 |
|      | 5.3.3 Coastal Erosion                                       | 64 |
|      | 5.3.4 Wave Hazard Analyses                                  | 64 |
| 5.4  | Alluvial Fan Analyses                                       | 65 |
| SECT | ON 6.0 – MAPPING METHODS                                    | 65 |
| 6.1  | Vertical and Horizontal Control                             | 65 |
| 6.2  | Base Map                                                    | 69 |
| 6.3  | Floodplain and Floodway Delineation                         | 70 |

### Volume 2

| 6.4 | Coast           | al Flood Hazard Mapping                         | 122 |
|-----|-----------------|-------------------------------------------------|-----|
| 6.5 | FIRM            | Revisions                                       | 122 |
|     | 6.5.1           | Letters of Map Amendment                        | 122 |
|     | 6.5.2           | Letters of Map Revision Based on Fill           | 122 |
|     | 6.5.3           | Letters of Map Revision                         | 123 |
|     | 6.5.4           | Physical Map Revisions                          | 124 |
|     | 6.5.5           | Contracted Restudies                            | 124 |
|     | 6.5.6           | Community Map History                           | 124 |
| SEC | <b>FION 7.0</b> | - CONTRACTED STUDIES AND COMMUNITY COORDINATION | 126 |
| 7.1 | Contra          | acted Studies                                   | 126 |
| 7.2 | Comm            | nunity Meetings                                 | 134 |
| SEC | FION 8.0        | - ADDITIONAL INFORMATION                        | 145 |
| SEC | <b>FION 9.0</b> | - BIBLIOGRAPHY AND REFERENCES                   | 148 |

### Volume 1

<u>Page</u>

Page

### <u>Figures</u>

| Figure 1: FIRM Index                                                     | 10 |
|--------------------------------------------------------------------------|----|
| Figure 2: FIRM Notes to Users                                            | 12 |
| Figure 3: Map Legend for FIRM                                            | 15 |
| Figure 4: Floodway Schematic                                             | 31 |
| Figure 5: Wave Runup Transect Schematic                                  | 32 |
| Figure 6: Coastal Transect Schematic                                     | 32 |
| Figure 7: Frequency Discharge-Drainage Area Curves                       | 50 |
| Figure 8: 1% Annual Chance Total Stillwater Elevations for Coastal Areas | 64 |
| Figure 9: Transect Location Map                                          | 65 |

### <u>Tables</u>

| Table 1: Listing of NFIP Jurisdictions                | 3  |
|-------------------------------------------------------|----|
| Table 2: Flooding Sources Included in this FIS Report | 20 |
| Table 3: Flood Zone Designations by Community         | 33 |
| Table 4: Basin Characteristics                        | 34 |
| Table 5: Principal Flood Problems                     | 34 |
| Table 6: Historic Flooding Elevations                 | 35 |
|                                                       |    |

| Table 7: Dams and Other Flood Hazard Reduction Measures         | 35 |
|-----------------------------------------------------------------|----|
| Table 8: Levee Systems                                          | 37 |
| Table 9: Summary of Discharges                                  | 41 |
| Table 10: Summary of Non-Coastal Stillwater Elevations          | 51 |
| Table 11: Stream Gage Information used to Determine Discharges  | 53 |
| Table 12: Summary of Hydrologic and Hydraulic Analyses          | 54 |
| Table 13: Roughness Coefficients                                | 63 |
| Table 14: Summary of Coastal Analyses                           | 64 |
| Table 15: Tide Gage Analysis Specifics                          | 64 |
| Table 16: Coastal Transect Parameters                           | 65 |
| Table 17: Summary of Alluvial Fan Analyses                      | 65 |
| Table 18: Results of Alluvial Fan Analyses                      | 65 |
| Table 19: Countywide Vertical Datum Conversion                  | 66 |
| Table 20: Stream-Based Vertical Datum Conversion                | 66 |
| Table 21: Base Map Sources                                      | 69 |
| Table 22: Summary of Topographic Elevation Data used in Mapping | 71 |

### Volume 2

| Table 23: Floodway Data                                               | 72  |
|-----------------------------------------------------------------------|-----|
| Table 24: Flood Hazard and Non-Encroachment Data for Selected Streams | 122 |
| Table 25: Summary of Coastal Transect Mapping Considerations          | 122 |
| Table 26: Incorporated Letters of Map Change                          | 123 |
| Table 27: Community Map History                                       | 125 |
| Table 28: Summary of Contracted Studies Included in this FIS Report   | 127 |
| Table 29: Community Meetings                                          | 135 |
| Table 30: Map Repositories                                            | 146 |
| Table 31: Additional Information                                      | 148 |
| Table 32: Bibliography and References                                 | 149 |

### Volume 3

# <u>Exhibits</u>

| Flood Profiles         | Panel |   |
|------------------------|-------|---|
| Belt Line Creek        | 01    | Р |
| Black Creek            | 02-03 | Р |
| Cahokia Creek          | 04-11 | Р |
| Canteen Creek          | 12-14 | Р |
| East Alton Ditch       | 15    | Р |
| East Fork Silver Creek | 16-17 | Р |
| East Fork Wood River   | 18-20 | Р |
| Honeycut Branch        | 21    | Ρ |
| Indian Creek           | 22-24 | Р |
| Joulters Creek         | 25-27 | Ρ |

| Flood Profiles                        | Panel   |
|---------------------------------------|---------|
| Judys Branch                          | 28-32 P |
| Judys Branch Tributary 5              | 33 P    |
| Judys Branch Tributary 5A             | 34 P    |
| Judys Branch Tributary 5B             | 35-36 P |
| Judys Branch Tributary 9              | 37 P    |
| Judys Branch Tributary 9A             | 38 P    |
| Judys Branch Tributary 9B             | 39 P    |
| Judys Branch Tributary 10             | 40 P    |
| Judys Creek                           | 41-43 P |
| Judys Creek Tributary B               | 44 P    |
| Laurel Branch                         | 45-46 P |
| Laurel Branch Tributary 1             | 47 P    |
| Lindenthal Creek                      | 48-49 P |
| Lindenthal Creek Tributary 1          | 50-51 P |
| Lindenthal Creek Tributary 2          | 52 P    |
| Lindenthal Creek Tributary 3          | 53 P    |
| Lindenthal Creek Tributary 4          | 54 P    |
| Mississippi River                     | 55-57 P |
| Mooney Creek                          | 58-61 P |
| Mooney Creek Tributary 1              | 62 P    |
| Mooney Creek Tributary 2              | 63 P    |
| Paddock Creek                         | 64-66 P |
| Sherry Creek – East Fork Sherry Creek | 67 P    |
| Silver Creek                          | 68-69 P |
| Silver Creek Tributary No. 1          | 70 P    |
| Silver Creek Tributary No. 2          | 71-72 P |
| Smith Lake Tributary                  | 73 P    |
| Smith Lake Tributary No. 2            | 74 P    |
| Stanley Creek                         | 75 P    |
| Sugar Fork                            | 76 P    |
| Tributary E                           | 77 P    |
| Tributary F                           | 78 P    |
| Tributary G                           | 79 P    |
| Tributary X                           | 80 P    |
| Tributary Z                           | 81 P    |
| West Fork Wood River                  | 82-84 P |
| Wood River                            | 85 P    |

# Published Separately

Flood Insurance Rate Map (FIRM)

### FLOOD INSURANCE STUDY REPORT MADISON COUNTY, ILLINOIS

### **SECTION 1.0 – INTRODUCTION**

### 1.1 The National Flood Insurance Program

The National Flood Insurance Program (NFIP) is a voluntary Federal program that enables property owners in participating communities to purchase insurance protection against losses from flooding. This insurance is designed to provide an alternative to disaster assistance to meet the escalating costs of repairing damage to buildings and their contents caused by floods.

For decades, the national response to flood disasters was generally limited to constructing flood-control works such as dams, levees, sea-walls, and the like, and providing disaster relief to flood victims. This approach did not reduce losses nor did it discourage unwise development. In some instances, it may have actually encouraged additional development. To compound the problem, the public generally could not buy flood coverage from insurance companies, and building techniques to reduce flood damage were often overlooked.

In the face of mounting flood losses and escalating costs of disaster relief to the general taxpayers, the U.S. Congress created the NFIP. The intent was to reduce future flood damage through community floodplain management ordinances, and provide protection for property owners against potential losses through an insurance mechanism that requires a premium to be paid for the protection.

The U.S. Congress established the NFIP on August 1, 1968, with the passage of the National Flood Insurance Act of 1968. The NFIP was broadened and modified with the passage of the Flood Disaster Protection Act of 1973 and other legislative measures. It was further modified by the National Flood Insurance Reform Act of 1994 and the Flood Insurance Reform Act of 2004. The NFIP is administered by the Federal Emergency Management Agency (FEMA), which is a component of the Department of Homeland Security (DHS).

Participation in the NFIP is based on an agreement between local communities and the Federal Government. If a community adopts and enforces floodplain management regulations to reduce future flood risks to new construction and substantially improved structures in Special Flood Hazard Areas (SFHAs), the Federal Government will make flood insurance available within the community as a financial protection against flood losses. The community's floodplain management regulations must meet or exceed criteria established in accordance with Title 44 Code of Federal Regulations (CFR) Part 60, *Criteria for Land Management and Use*.

SFHAs are delineated on the community's Flood Insurance Rate Maps (FIRMs). Under the NFIP, buildings that were built before the flood hazard was identified on the community's FIRMs are generally referred to as "Pre-FIRM" buildings. When the NFIP was created, the U.S. Congress recognized that insurance for Pre-FIRM buildings would be prohibitively expensive if the premiums were not subsidized by the Federal Government. Congress also recognized that most of these floodprone buildings were built by individuals who did not have sufficient knowledge of the flood hazard to make informed decisions. The NFIP requires that full actuarial rates reflecting the complete flood risk be charged on all buildings constructed or substantially improved on or after the effective date of the initial FIRM for the community or after December 31, 1974, whichever is later. These buildings are generally referred to as "Post-FIRM" buildings.

### **1.2** Purpose of this Flood Insurance Study Report

This Flood Insurance Study (FIS) Report revises and updates information on the existence and severity of flood hazards for the study area. The studies described in this report developed flood hazard data that will be used to establish actuarial flood insurance rates and to assist communities in efforts to implement sound floodplain management.

In some states or communities, floodplain management criteria or regulations may exist that are more restrictive than the minimum Federal requirements. Contact your State NFIP Coordinator to ensure that any higher State standards are included in the community's regulations.

### **1.3** Jurisdictions Included in the Flood Insurance Study Project

This FIS Report covers the entire geographic area of Madison County, Illinois.

The jurisdictions that are included in this project area, along with the Community Identification Number (CID) for each community and the United States Geological Survey (USGS) 8-digit Hydrologic Unit Code (HUC-8) sub-basins affecting each, are shown in Table 1. The FIRM panel numbers that affect each community are listed. If the flood hazard data for the community is not included in this FIS Report, the location of that data is identified.

The location of flood hazard data for participating communities in multiple jurisdictions is also indicated in the table.

Jurisdictions that have no identified SFHAs as of the effective date of this study are indicated in the table. Changed conditions in these communities (such as urbanization or annexation) or the availability of new scientific or technical data about flood hazards could make it necessary to determine SFHAs in these jurisdictions in the future.

### Table 1: Listing of NFIP Jurisdictions

|                                        |        | HUC-8                 |                                                                                                                                                                                                                                       | If Not<br>Included,<br>Location<br>of Flood |
|----------------------------------------|--------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|                                        |        | Sub-                  |                                                                                                                                                                                                                                       | Hazard                                      |
| Community                              | CID    | Basin(s)              | Located on FIRM Panel(s)                                                                                                                                                                                                              | Data                                        |
| Alhambra, Village of                   | 170270 | 07140204              | 17119C0138D                                                                                                                                                                                                                           |                                             |
| Alton, City of                         | 170437 | 07110009              | 17119C0037D, 17119C0039D, 17119C0041D, 17119C0042D,<br>17119C0043D, 17119C0044D, 17119C0061D, 17119C0062D,<br>17119C0063D, 17119C0156D, 17119C0157D                                                                                   |                                             |
| Bethalto, Village of                   | 170438 | 07110009,<br>07140101 | 17119C0062D, 17119C0064D, 17119C0066D, 17119C0067D, 17119C0068D, 17119C0068D, 17119C0069D, 17119C0181D, 17119C0182D                                                                                                                   |                                             |
| Collinsville, City of <sup>1</sup>     | 170439 | 07140101              | 17119C0332D, 17119C0333D, 17119C0334D, 17119C0337D,<br>17119C0341D, 17119C0342D, 17119C0351D, 17119C0353D,<br>17119C0354D, 17119C0361D, 17119C0362D                                                                                   |                                             |
| East Alton, Village of                 | 170440 | 07110009              | 17119C0044D, 17119C0061D, 17119C0062D, 17119C0063D,<br>17119C0064D, 17119C0157D, 17119C0176D                                                                                                                                          |                                             |
| Edwardsville, City of                  | 170441 | 07140101,<br>07140204 | 17119C0184D, 17119C0187D, 17119C0189D, 17119C0191D,<br>17119C0192D, 17119C0193D, 17119C0194D, 17119C0203D,<br>17119C0204D, 17119C0208D, 17119C0211D, 17119C0212D,<br>17119C0213D, 17119C0214D, 17119C0216D, 17119C0220D               |                                             |
| Fairmont City, Village of <sup>1</sup> | 170627 | 07140101              | 17119C0336D, 17119C0337D                                                                                                                                                                                                              |                                             |
| Glen Carbon, Village of                | 170442 | 07140101,<br>07140204 | 17119C0193D, 17119C0194D, 17119C0211D, 17119C0212D,<br>17119C0213D, 17119C0214D, 17119C0220D, 17119C0331D,<br>17119C0332D, 17119C0351D, 17119C0352D, 17119C0356D                                                                      |                                             |
| Godfrey, Village of                    | 171031 | 07110009              | 17119C0007D, 17119C0009D, 17119C0017D, 17119C0026D,<br>17119C0027D, 17119C0028D, 17119C0029D, 17119C0032D,<br>17119C0034D, 17119C0035D <sup>2</sup> , 17119C0036D, 17119C0037D,<br>17119C0038D, 17119C0039D, 17119C0041D, 17119C0042D |                                             |

<sup>1</sup> Community mapped in both Madison County and St. Clair County

<sup>2</sup> Panel Not Printed

<sup>3</sup> No Special Flood Hazard Areas Identified

| Community                     | CID    | HUC-8<br>Sub-<br>Basin(s) | Located on FIRM Panel(s)                                                                                                                                                                                                                | If Not<br>Included,<br>Location<br>of Flood<br>Hazard<br>Data |
|-------------------------------|--------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Granite City, City of         | 170443 |                           | 17119C0167D, 17119C0169D, 17119C0186D, 17119C0187D,<br>17119C0188D, 17119C0189D, 17119C0304D, 17119C0306D,<br>17119C0307D, 17119C0308D, 17119C0309D, 17119C0317D,<br>17119C0326D, 17119C0327D, 17119C0328D, 17119C0329D,<br>17119C0336D | Data                                                          |
| Grantfork, Village of         | 170209 | 07140204                  | 17119C0258D                                                                                                                                                                                                                             |                                                               |
| Hamel, Village of             | 170160 | 07140204                  | 17119C0115D                                                                                                                                                                                                                             |                                                               |
| Hartford, Village of          | 170444 | 07110009,<br>07140101     | 17119C0176D, 17119C0177D, 17119C0178D, 17119C0179D,<br>17119C0186D, 17119C0187D                                                                                                                                                         |                                                               |
| Highland, City of             | 170445 | 07140204                  | 17119C0258D, 17119C0262D, 17119C0264D, 17119C0268D, 17119C0270D, 17119C0405D, 17119C0406D, 17119C0410D                                                                                                                                  |                                                               |
| Livingston, Village of        | 170794 | 07140204                  | 17119C0109D, 17119C0110D                                                                                                                                                                                                                |                                                               |
| Madison, City of <sup>1</sup> | 170446 | 07140101                  | 17119C0167D, 17119C0168D, 17119C0169D, 17119C0186D,<br>17119C0302D, 17119C0304D, 17119C0306D, 17119C0307D,<br>17119C0308D, 17119C0309D, 17119C0312D, 17119C0316D,<br>17119C0317D, 17119C0328D, 17119C0329D, 17119C0336D,<br>17119C0337D |                                                               |

<sup>1</sup> Community mapped in both Madison County and St. Clair County

<sup>2</sup> Panel Not Printed

<sup>3</sup> No Special Flood Hazard Areas Identified

| Community                               | CID    | HUC-8<br>Sub-<br>Basin(s)                       | Located on FIRM Panel(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | If Not<br>Included,<br>Location<br>of Flood<br>Hazard<br>Data |
|-----------------------------------------|--------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Madison County,<br>Unincorporated Areas | 170436 | 07110009,<br>07140101,<br>07140203,<br>07140204 | 17119C0032D, 17119C0034D, 17119C0035D <sup>2</sup> , 17119C0041D,<br>17119C0042D, 17119C0043D, 17119C0044D, 17119C0055D,<br>17119C0060D, 17119C0061D, 17119C0062D, 17119C0063D,<br>17119C0064D, 17119C0060D, 17119C0067D, 17119C0068D,<br>17119C0069D, 17119C0105D, 17119C0085D, 17119C0090D,<br>17119C0095D, 17119C0105D, 17119C0109D, 17119C0110D,<br>17119C0115D, 17119C0120D, 17119C0130D, 17119C0135D,<br>17119C0167D, 17119C0140D, 17119C0145D, 17119C0157D,<br>17119C0167D, 17119C0168D, 17119C0169D, 17119C0176D,<br>17119C0178D, 17119C0184D, 17119C0181D, 17119C0182D,<br>17119C0183D, 17119C0184D, 17119C0181D, 17119C0187D,<br>17119C0183D, 17119C0184D, 17119C0180D, 17119C0187D,<br>17119C0188D, 17119C0194D, 17119C0191D, 17119C0192D,<br>17119C0193D, 17119C0194D, 17119C0203D, 17119C0204D,<br>17119C0205D, 17119C023D, 17119C0210D, 17119C0211D,<br>17119C0220D, 17119C0244D, 17119C0245D, 17119C0216D,<br>17119C025D, 17119C0244D, 17119C0245D, 17119C025D,<br>17119C025D, 17119C0260D, 17119C0245D, 17119C025D,<br>17119C025D, 17119C0260D, 17119C0262D, 17119C0264D,<br>17119C025D, 17119C0260D, 17119C0262D, 17119C025D,<br>17119C025D, 17119C0260D, 17119C0262D, 17119C025D,<br>17119C0242D, 17119C0302D, 17119C0262D, 17119C025D,<br>17119C0242D, 17119C0302D, 17119C0304D, 17119C0320D,<br>17119C0330D, 17119C0334D, 17119C0330D, 17119C0327D,<br>17119C0333D, 17119C034D, 17119C035D, 17119C0332D,<br>17119C0341D, 17119C034D, 17119C035D, 17119C035D,<br>17119C035D, 17119C034D, 17119C035D, 17119C035D,<br>17119C0333D, 17119C034D, 17119C035D, 17119C035D,<br>17119C035D, 17119C034D, 17119C0335D, 17119C035D,<br>17119C0333D, 17119C034D, 17119C035D, 17119C0337D,<br>17119C0341D, 17119C0342D, 17119C035D, 17119C035D,<br>17119C035D, 17119C0342D, 17119C035D, 17119C035D,<br>17119C035D, 17119C0342D, 17119C035D, 17119C035D,<br>17119C035D, 17119C0342D, 17119C035D, 17119C035D,<br>17119C035D, 17119C0354D, 17119C0355D, 17119C0357D, |                                                               |

<sup>1</sup> Community mapped in both Madison County and St. Clair County <sup>2</sup> Panel Not Printed

<sup>3</sup> No Special Flood Hazard Areas Identified

| Community                                              | CID    | HUC-8<br>Sub-<br>Basin(s)                       | Located on FIRM Panel(s)                                                                                                                                                                                                                                          | If Not<br>Included,<br>Location<br>of Flood<br>Hazard<br>Data |
|--------------------------------------------------------|--------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Madison County,<br>Unincorporated Areas<br>(continued) | 170436 | 07110009,<br>07140101,<br>07140203,<br>07140204 | 17119C0358D, 17119C0359D, 17119C0361D, 17119C0362D,<br>17119C0370D, 17119C0376D, 17119C0378D, 17119C0380D,<br>17119C0382D, 17119C0385D, 17119C0390D, 17119C0395D,<br>17119C0405D, 17119C0406D, 17119C0410D, 17119C0415D,<br>17119C0420D, 17119C0430D, 17119C0440D |                                                               |
| Marine, Village of                                     | 170199 | 07140204                                        | 17119C0242D, 17119C0244D, 17119C0245D                                                                                                                                                                                                                             |                                                               |
| Maryville, Village of                                  | 170299 | 07140101                                        | 17119C0332D, 17119C0351D, 17119C0352D, 17119C0353D,<br>17119C0354D, 17119C0356D, 17119C0358D                                                                                                                                                                      |                                                               |
| New Douglas, Village of <sup>3</sup>                   | 170316 | 07140203,<br>07140204                           | 17119C0135D                                                                                                                                                                                                                                                       |                                                               |
| Pierron, Village of <sup>4</sup>                       | 170317 | 07140204                                        | 17119C0290D                                                                                                                                                                                                                                                       |                                                               |
| Pontoon Beach, Village of                              | 170447 | 07140101                                        | 17119C0188D, 17119C0189D, 17119C0193D, 17119C0194D,<br>17119C0327D, 17119C0328D, 17119C0329D, 17119C0331D,<br>17119C0332D, 17119C0333D, 17119C0334D, 17119C0337D,<br>17119C0341D                                                                                  |                                                               |
| Roxana, Village of                                     | 170448 | 07110009,<br>07140101                           | 17119C0177D, 17119C0179D, 17119C0181D, 17119C0182D, 17119C0183D, 17119C0184D, 17119C0191D, 17119C0192D                                                                                                                                                            |                                                               |
| South Roxana, Village of                               | 170449 | 07110009,<br>07140101                           | 17119C0179D, 17119C0183D, 17119C0187D, 17119C0191D                                                                                                                                                                                                                |                                                               |
| St. Jacob, Village of <sup>3</sup>                     | 170208 | 07140204                                        | 17119C0382D, 17119C0385D                                                                                                                                                                                                                                          |                                                               |
| Troy, City of                                          | 170255 | 07140101,<br>07140204                           | 17119C0356D, 17119C0357D, 17119C0358D, 17119C0359D,<br>17119C0376D, 17119C0378D                                                                                                                                                                                   |                                                               |
| Venice, City of                                        | 170450 | 07140101                                        | 17119C0308D, 17119C0316D                                                                                                                                                                                                                                          |                                                               |
| Williamson, Village of                                 | 170324 | 07140204                                        | 17119C0110D                                                                                                                                                                                                                                                       |                                                               |

<sup>1</sup> Community mapped in both Madison County and St. Clair County <sup>2</sup> Panel Not Printed

<sup>3</sup> No Special Flood Hazard Areas Identified

| Community                       | CID    | HUC-8<br>Sub-<br>Basin(s) | Located on FIRM Panel(s)                                                                               | If Not<br>Included,<br>Location<br>of Flood<br>Hazard<br>Data |
|---------------------------------|--------|---------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Wood River, City of             | 170451 | 07110009,<br>07140101     | 17119C0063D, 17119C0064D, 17119C0068D, 17119C0176D, 17119C0177D, 17119C0181D, 17119C0182D, 17119C0183D |                                                               |
| Worden, Village of <sup>3</sup> | 170825 | 07140101,<br>07140204     | 17119C0105D, 17119C0115D                                                                               |                                                               |

<sup>1</sup> Community mapped in both Madison County and St. Clair County

<sup>2</sup> Panel Not Printed

<sup>3</sup> No Special Flood Hazard Areas Identified

### 1.4 Considerations for using this Flood Insurance Study Report

The NFIP encourages State and local governments to implement sound floodplain management programs. To assist in this endeavor, each FIS Report provides floodplain data, which may include a combination of the following: 10-, 4-, 2-, 1-, and 0.2-percent annual chance flood elevations (the 1-percent-annual-chance flood elevation is also referred to as the Base Flood Elevation (BFE)); delineations of the 1-percent-annual-chance and 0.2-percent-annual-chance floodplains; and 1-percent-annual-chance floodway. This information is presented on the FIRM and/or in many components of the FIS Report, including Flood Profiles, Floodway Data tables, Summary of Non-Coastal Stillwater Elevations tables, and Coastal Transect Parameters tables (not all components may be provided for a specific FIS).

This section presents important considerations for using the information contained in this FIS Report and the FIRM, including changes in format and content. Figures 1, 2, and 3 present information that applies to using the FIRM with the FIS Report.

• Part or all of this FIS Report may be revised and republished at any time. In addition, part of this FIS Report may be revised by a Letter of Map Revision (LOMR), which does not involve republication or redistribution of the FIS Report. Refer to Section 6.5 of this FIS Report for information about the process to revise the FIS Report and/or FIRM.

It is, therefore, the responsibility of the user to consult with community officials by contacting the community repository to obtain the most current FIS Report components. Communities participating in the NFIP have established repositories of flood hazard data for floodplain management and flood insurance purposes. Community map repository addresses are provided in Table 30, "Map Repositories," within this FIS Report.

 New FIS Reports are frequently developed for multiple communities, such as entire counties. A countywide FIS Report incorporates previous FIS Reports for individual communities and the unincorporated area of the county (if not jurisdictional) into a single document and supersedes those documents for the purposes of the NFIP.

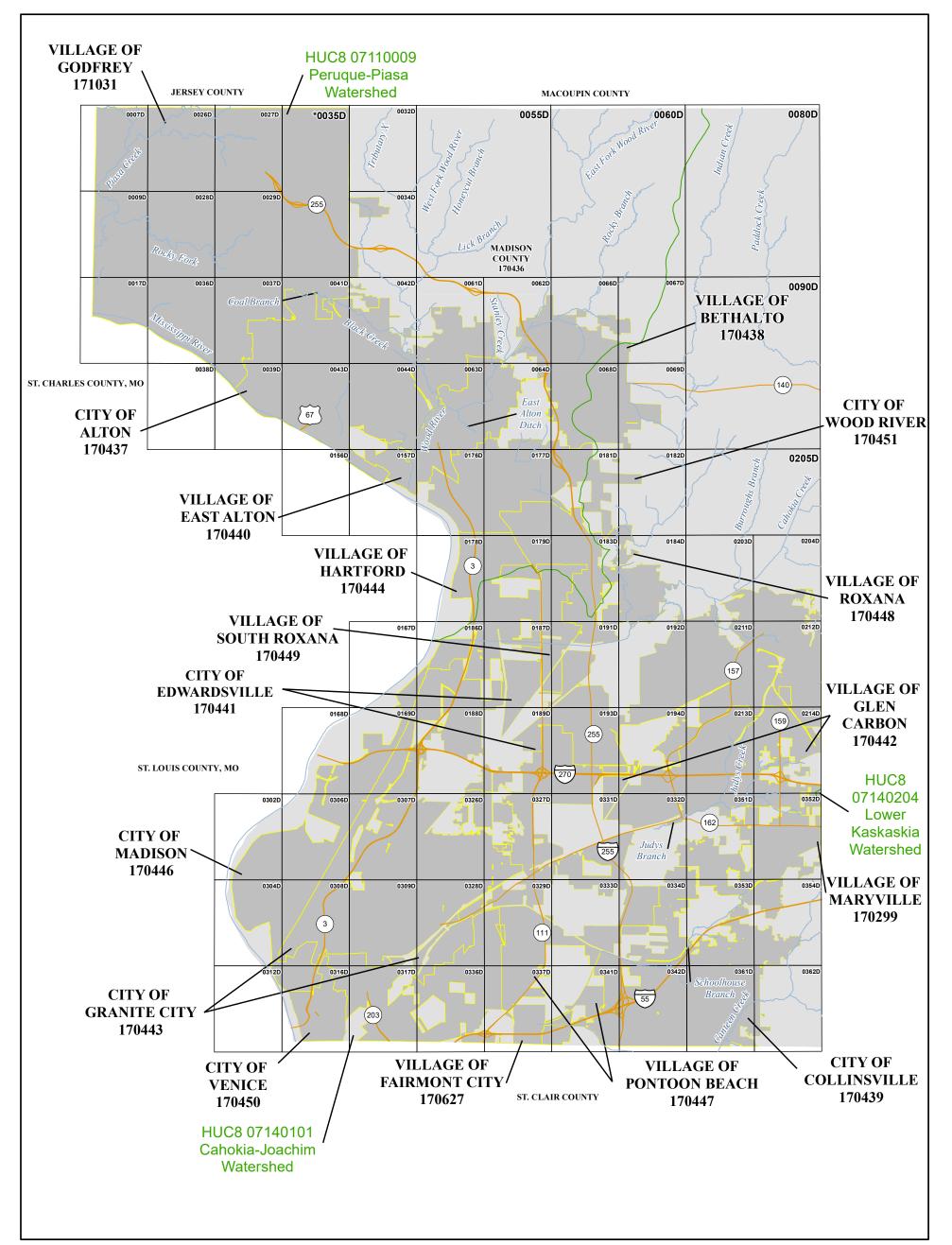
The initial Countywide FIS Report for Madison County became effective on **TBD**. Refer to Table 27 for information about subsequent revisions to the FIRMs.

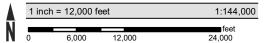
• Selected FIRM panels for the community may contain information (such as floodways and cross sections) that was previously shown separately on the corresponding Flood Boundary and Floodway Map (FBFM) panels. In addition, former flood hazard zone designations have been changed as follows:

| <u>Old Zone</u> | <u>New Zone</u> |
|-----------------|-----------------|
| A1 through A30  | AE              |
| V1 through V30  | VE              |
| В               | X (shaded)      |
| С               | X (unshaded)    |

• The Community Rating System (CRS) is a voluntary incentive program that recognizes and encourages community floodplain management activities that exceed

the minimum NFIP requirements. Visit the FEMA Web site at <u>www.fema.gov/flood-insurance/rules-legislation/community-rating-system</u> or contact your appropriate FEMA Regional Office for more information about this program.


FEMA does not design, build, inspect, operate, maintain, or certify levees. FEMA is responsible for accurately identifying flood hazards and communicating those hazards and risks to affected stakeholders. FEMA has identified one or more levee systems in this jurisdiction summarized in Table 8 of this FIS Report. For FEMA to accredit the identified levee systems, the levee systems must meet the criteria of the Code of Federal Regulations, Title 44, Section 65.10 (44 CFR 65.10), titled "Mapping of Areas Protected by Levee Systems."


Information on the levee systems in this jurisdiction can be obtained from the USACE National Levee Database (<u>https://levees.sec.usace.army.mil/</u>). For additional information, the user should contact the appropriate jurisdiction floodplain administrator and the levee owner or sponsor.

• FEMA has developed a *Guide to Flood Maps* (FEMA 258) and online tutorials to assist users in accessing the information contained on the FIRM. These include how to read panels and step-by-step instructions to obtain specific information. To obtain this guide and other assistance in using the FIRM, visit the FEMA Web site at www.fema.gov/flood-maps/tutorials.

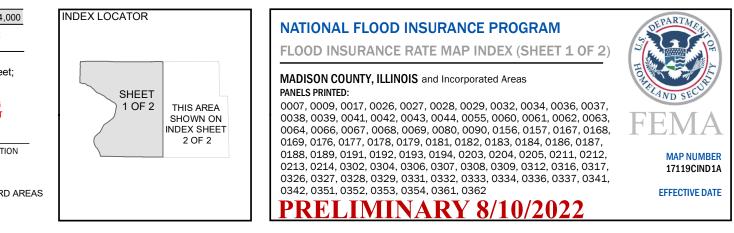
The FIRM Index in Figure 1 shows the overall FIRM panel layout within Madison County, and also displays the panel number and effective date for each FIRM panel in the county. Other information shown on the FIRM Index includes community boundaries, flooding sources, watershed boundaries, and USGS HUC-8 codes.

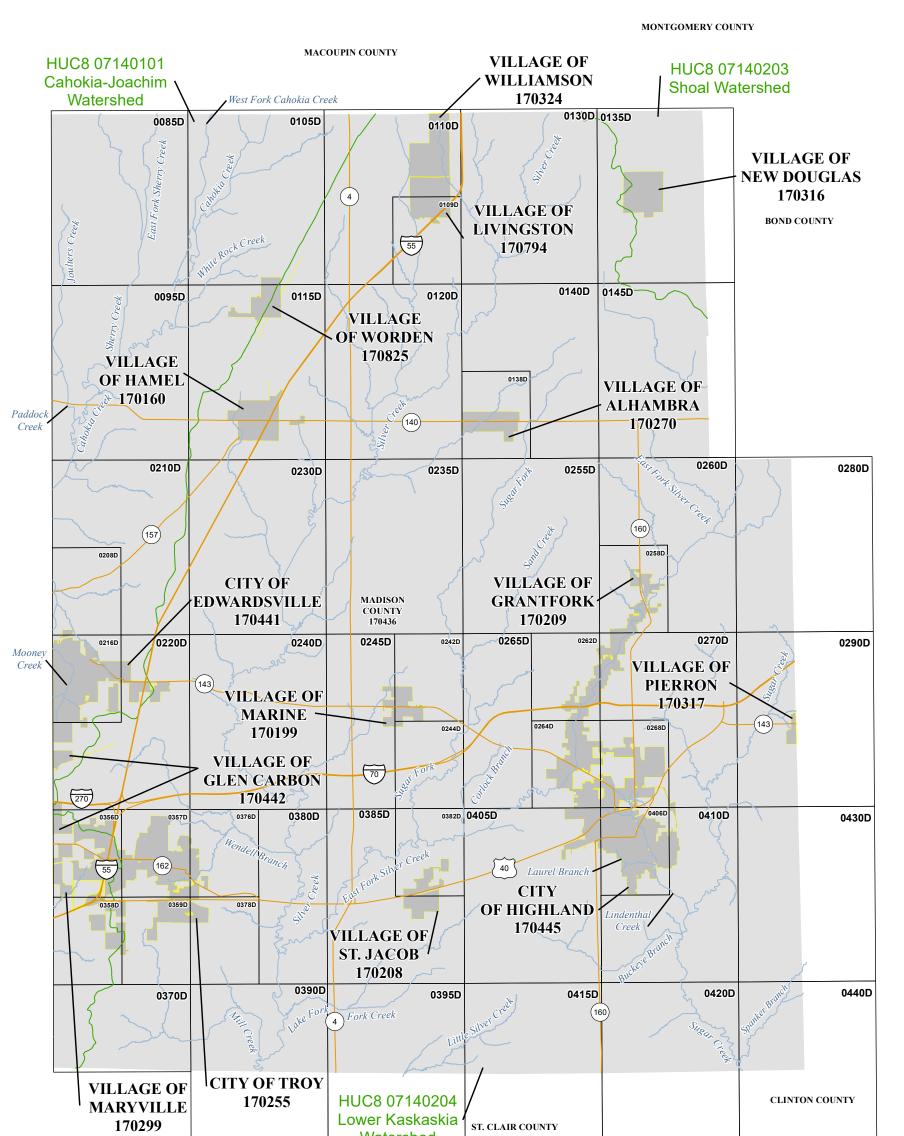
Figure 1: FIRM Index



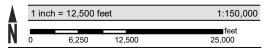


Map Projection:


NAD 1983 StatePlane Illinois West FIPS 1202 Feet; Western Hemisphere; Vertical Datum: NAVD 88


THE INFORMATION DEPICTED ON THIS MAP AND SUPPORTING DOCUMENTATION ARE ALSO AVAILABLE IN DIGITAL FORMAT AT

#### HTTPS://MSC.FEMA.GOV


SEE FLOOD INSURANCE STUDY FOR ADDITIONAL INFORMATION

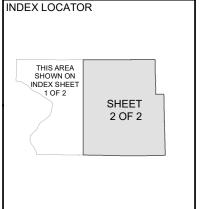
\* PANEL NOT PRINTED - NO SPECIAL FLOOD HAZARD AREAS





|  | Watershed |  |  |
|--|-----------|--|--|
|  | 1         |  |  |
|  |           |  |  |
|  |           |  |  |
|  |           |  |  |
|  |           |  |  |




Map Projection:

NAD 1983 StatePlane Illinois West FIPS 1202 Feet; Western Hemisphere; Vertical Datum: NAVD 88

THE INFORMATION DEPICTED ON THIS MAP AND SUPPORTING DOCUMENTATION ARE ALSO AVAILABLE IN DIGITAL FORMAT AT

#### HTTPS://MSC.FEMA.GOV

SEE FLOOD INSURANCE STUDY FOR ADDITIONAL INFORMATION



### NATIONAL FLOOD INSURANCE PROGRAM

FLOOD INSURANCE RATE MAP INDEX (SHEET 2 OF 2)

MADISON COUNTY, ILLINOIS and Incorporated Areas

#### PANELS PRINTED:

0085, 0095, 0105, 0109, 0110, 0115, 0120, 0130, 0135, 0138, 0140, 0145, 0208, 0210, 0216, 0220, 0230, 0235, 0240, 0242, 0244, 0245, 0255, 0258, 0260, 0262, 0264, 0265, 0268, 0270, 0280, 0285, 0290, 0356, 0357, 0358, 0359, 0370, 0376, 0378, 0380, 0382, 0385, 0390, 0395, 0405, 0406, 0410, 0415, 0420, 0430, 0440



# PRELIMINARY 8/10/2022

Each FIRM panel may contain specific notes to the user that provide additional information regarding the flood hazard data shown on that map. However, the FIRM panel does not contain enough space to show all the notes that may be relevant in helping to better understand the information on the panel. Figure 2 contains the full list of these notes.

### Figure 2: FIRM Notes to Users

# NOTES TO USERS

For information and questions about this Flood Insurance Rate Map (FIRM), available products associated with this FIRM including historic versions of this FIRM, how to order products, or the National Flood Insurance Program in general, please call the FEMA Mapping and Insurance eXchange at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA Flood Map Service Center website at <u>msc.fema.gov</u>. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the website. Users may determine the current map date for each FIRM panel by visiting the FEMA Flood Map Service Center website or by calling the FEMA Mapping and Insurance eXchange.

Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well as the current FIRM Index. These may be ordered directly from the Flood Map Service Center at the number listed above.

For community and countywide map dates, refer to Table 27 in this FIS Report.

To determine if flood insurance is available in the community, contact your insurance agent or call the National Flood Insurance Program at 1-800-638-6620.

<u>PRELIMINARY FIS REPORT</u>: FEMA maintains information about map features, such as street locations and names, in or near designated flood hazard areas. Requests to revise information in or near designated flood hazard areas may be provided to FEMA during the community review period, at the final Consultation Coordination Officer's meeting, or during the statutory 90-day appeal period. Approved requests for changes will be shown on the final printed FIRM.

The map is for use in administering the NFIP. It may not identify all areas subject to flooding, particularly from local drainage sources of small size. Consult the community map repository to find updated or additional flood hazard information.

<u>BASE FLOOD ELEVATIONS</u>: For more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, consult the Flood Profiles and Floodway Data and/or Summary of Non-Coastal Stillwater Elevations tables within this FIS Report. Use the flood elevation data within the FIS Report in conjunction with the FIRM for construction and/or floodplain management.

### Figure 2: FIRM Notes to Users (continued)

<u>FLOODWAY INFORMATION</u>: Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the FIS Report for this jurisdiction.

<u>FLOOD CONTROL STRUCTURE INFORMATION</u>: Certain areas not in Special Flood Hazard Areas may have reduced flood hazards due to flood control structures. Refer to Section 4.3 "Dams and Other Flood Hazard Reduction Measures" of this FIS Report for information on flood control structures for this jurisdiction.

<u>PROJECTION INFORMATION</u>: The projection used in the preparation of the map was State Plane Transverse Mercator, Illinois West Zone 1202. The horizontal datum was the North American Datum of 1983 NAD83, GRS1980 spheroid. Differences in datum, spheroid, projection or State Plane zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of the FIRM.

<u>ELEVATION DATUM</u>: Flood elevations on the FIRM are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at <u>www.ngs.noaa.gov.</u>

Local vertical monuments may have been used to create the map. To obtain current monument information, please contact the appropriate local community listed in Table 30 of this FIS Report.

<u>BASE MAP INFORMATION</u>: Base map information shown on the FIRM was derived from multiple sources. Transportation line data and municipal boundaries were provided by the Madison County Information Systems Department. Water features including HUC-8 boundaries, water features, and water lines were provided by the United States Geological Survey (USGS) as a part of their National Hydrography Dataset. Aerial imagery was provided by the United States Department of Agriculture (USDA). Source data for levees were provided by the United States Army Corps of Engineers (USACE). Source data for the Professional Land Survey System (PLSS) and the county political boundary were provided by the Illinois State Geological Survey (ISGS). For information about base maps, refer to Section 6.2 "Base Map" in this FIS Report.

The map reflects more detailed and up-to-date stream channel configurations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables may reflect stream channel distances that differ from what is shown on the map.

Corporate limits shown on the map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after the map was published, map users should contact appropriate community officials to verify current corporate limit locations.

### Figure 2: FIRM Notes to Users (continued)

### NOTES FOR FIRM INDEX

<u>REVISIONS TO INDEX</u>: As new studies are performed and FIRM panels are updated within Madison County, Illinois, corresponding revisions to the FIRM Index will be incorporated within the FIS Report to reflect the effective dates of those panels. Please refer to Table 27 of this FIS Report to determine the most recent FIRM revision date for each community. The most recent FIRM panel effective date will correspond to the most recent index date.

### SPECIAL NOTES FOR SPECIFIC FIRM PANELS

This Notes to Users section was created specifically for Madison County, Illinois, effective TBD.

<u>ACCREDITED LEVEE SYSTEM</u>: Check with your local community to obtain more information on the levee system(s) shown as providing flood hazard reduction on this panel. To mitigate flood hazards in residual risk areas, property owners and residents are encouraged to review the community's emergency preparedness plan and to consider flood insurance and floodproofing or other risk reduction measures. For more information on flood insurance, interested parties should visit www.fema.gov/flood-insurance.

<u>NON-ACCREDITED LEVEE SYSTEM</u>: This panel contains a levee system that has not been accredited and is therefore not recognized as reducing the 1-percent-annual-chance flood hazard.

<u>FLOWAGE EASEMENT AREA</u>: Flowage easement area data was provided by the U.S. Army Corps of Engineers, St. Louis District and is current as of June 2021. For information about the delineation of flowage easement areas in this Flood Risk Project, please contact U.S. Army Corps of Engineers, St. Louis District Levee Safety Program Manager at (314) 331-8425.

<u>FLOOD RISK REPORT</u>: A Flood Risk Report (FRR) may be available for many of the flooding sources and communities referenced in this FIS Report. The FRR is provided to increase public awareness of flood risk by helping communities identify the areas within their jurisdictions that have the greatest risks. Although non-regulatory, the information provided within the FRR can assist communities in assessing and evaluating mitigation opportunities to reduce these risks. It can also be used by communities developing or updating flood risk mitigation plans. These plans allow communities to identify and evaluate opportunities to reduce potential loss of life and property. However, the FRR is not intended to be the final authoritative source of all flood risk data for a project area; rather, it should be used with other data sources to paint a comprehensive picture of flood risk.

Each FIRM panel contains an abbreviated legend for the features shown on the maps. However, the FIRM panel does not contain enough space to show the legend for all map features. Figure 3 shows the full legend of all map features. Note that not all of these features may appear on the FIRM panels in Madison County.

### Figure 3: Map Legend for FIRM

**SPECIAL FLOOD HAZARD AREAS:** The 1% annual chance flood, also known as the base flood or 100-year flood, has a 1% chance of happening or being exceeded each year. Special Flood Hazard Areas are subject to flooding by the 1% annual chance flood. The Base Flood Elevation is the water surface elevation of the 1% annual chance flood. The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights. See note for specific types. If the floodway is too narrow to be shown, a note is shown.

Special Flood Hazard Areas subject to inundation by the 1% annual chance flood (Zones A, AE, AH, AO, AR, A99, V and VE)

- Zone A The flood insurance rate zone that corresponds to the 1% annual chance floodplains. No base (1% annual chance) flood elevations (BFEs) or depths are shown within this zone.
- Zone AE The flood insurance rate zone that corresponds to the 1% annual chance floodplains. Base flood elevations derived from the hydraulic analyses are shown within this zone.
- Zone AH The flood insurance rate zone that corresponds to the areas of 1% annual chance shallow flooding (usually areas of ponding) where average depths are between 1 and 3 feet. Whole-foot BFEs derived from the hydraulic analyses are shown at selected intervals within this zone.
- Zone AO The flood insurance rate zone that corresponds to the areas of 1% annual chance shallow flooding (usually sheet flow on sloping terrain) where average depths are between 1 and 3 feet. Average whole-foot depths derived from the hydraulic analyses are shown within this zone.
- Zone AR The flood insurance rate zone that corresponds to areas that were formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood.
- Zone A99 The flood insurance rate zone that corresponds to areas of the 1% annual chance floodplain that will be protected by a Federal flood protection system where construction has reached specified statutory milestones. No base flood elevations or flood depths are shown within this zone.
  - Zone V The flood insurance rate zone that corresponds to the 1% annual chance coastal floodplains that have additional hazards associated with storm waves. Base flood elevations are not shown within this zone.
- Zone VE Zone VE is the flood insurance rate zone that corresponds to the 1% annual chance coastal floodplains that have additional hazards associated with storm waves. Base flood elevations derived from the coastal analyses are shown within this zone as static whole-foot elevations that apply throughout the zone.



Regulatory Floodway determined in Zone AE.

| OTHER AREAS OF FLO | OD HAZARD                                                                                                                                                                                                                                                                                                               |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Shaded Zone X: Areas of 0.2% annual chance flood hazards and areas of 1% annual chance flood hazards with average depths of less than 1 foot or with drainage areas less than 1 square mile.                                                                                                                            |
|                    | Future Conditions 1% Annual Chance Flood Hazard – Zone X: The flood insurance rate zone that corresponds to the 1% annual chance floodplains that are determined based on future-conditions hydrology. No base flood elevations or flood depths are shown within this zone.                                             |
|                    | Area with Reduced Flood Hazard due to Accredited or Provisionally<br>Accredited Levee System: Area is shown as reduced flood hazard from<br>the 1-percent-annual-chance or greater flood by a levee system.<br>Overtopping or failure of any levee system is possible. See Notes to Users<br>for important information. |
|                    | Area with Undetermined Flood Hazard due to Non-Accredited Levee<br>System: Analysis and mapping procedures for non-accredited levee<br>systems were applied resulting in a flood insurance rate zone where flood<br>hazards are undetermined, but possible.                                                             |
| OTHER AREAS        |                                                                                                                                                                                                                                                                                                                         |
|                    | Zone D (Areas of Undetermined Flood Hazard): The flood insurance rate zone that corresponds to unstudied areas where flood hazards are undetermined, but possible.                                                                                                                                                      |
| NO SCREEN          | Unshaded Zone X: Areas of minimal flood hazard.                                                                                                                                                                                                                                                                         |
| FLOOD HAZARD AND O | THER BOUNDARY LINES                                                                                                                                                                                                                                                                                                     |
| (ortho) (vector)   | Flood Zone Boundary (white line on ortho-photography-based mapping; gray line on vector-based mapping)                                                                                                                                                                                                                  |
|                    | Limit of Study                                                                                                                                                                                                                                                                                                          |
|                    | Jurisdiction Boundary                                                                                                                                                                                                                                                                                                   |
| <b></b>            | Limit of Moderate Wave Action (LiMWA): Indicates the inland limit of the area affected by waves greater than 1.5 feet                                                                                                                                                                                                   |
|                    | Flowage Easement Area – privately owned land on which the U.S. Army Corps of Engineers has acquired certain perpetual rights                                                                                                                                                                                            |

# Figure 3: Map Legend for FIRM (continued)

| GENERAL STRUCTURE                             | S                                                                                                                                                                                                      |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aqueduct<br>Channel<br>Culvert<br>Storm Sewer | Channel, Culvert, Aqueduct, or Storm Sewer                                                                                                                                                             |
| Dam<br>Jetty<br>Weir                          | Dam, Jetty, Weir                                                                                                                                                                                       |
|                                               | Levee, Dike, or Floodwall                                                                                                                                                                              |
| Bridge                                        | Bridge                                                                                                                                                                                                 |
| REFERENCE MARKERS                             | 3                                                                                                                                                                                                      |
| 22.0                                          | River mile Markers                                                                                                                                                                                     |
| CROSS SECTION & TRA                           | ANSECT INFORMATION                                                                                                                                                                                     |
| <b>⟨B 20.2</b>                                | Lettered Cross Section with Regulatory Water Surface Elevation (BFE)                                                                                                                                   |
| <u> </u>                                      | Numbered Cross Section with Regulatory Water Surface Elevation (BFE)                                                                                                                                   |
| 17.5                                          | Unlettered Cross Section with Regulatory Water Surface Elevation (BFE)                                                                                                                                 |
| 8                                             | Coastal Transect                                                                                                                                                                                       |
|                                               | Profile Baseline: Indicates the modeled flow path of a stream and is shown on FIRM panels for all valid studies with profiles or otherwise established base flood elevation.                           |
|                                               | Coastal Transect Baseline: Used in the coastal flood hazard model to represent the 0.0-foot elevation contour and the starting point for the transect and the measuring point for the coastal mapping. |
| ~~~~ 513 ~~~~                                 | Base Flood Elevation Line                                                                                                                                                                              |
| ZONE AE<br>(EL 16)                            | Static Base Flood Elevation value (shown under zone label)                                                                                                                                             |
| ZONE AO<br>(DEPTH 2)                          | Zone designation with Depth                                                                                                                                                                            |
| ZONE AO<br>(DEPTH 2)<br>(VEL 15 FPS)          | Zone designation with Depth and Velocity                                                                                                                                                               |

# Figure 3: Map Legend for FIRM (continued)

| BASE MAP FEATURES                  |                                                                       |
|------------------------------------|-----------------------------------------------------------------------|
| Missouri Creek                     | River, Stream or Other Hydrographic Feature                           |
| (234)                              | Interstate Highway                                                    |
| 234                                | U.S. Highway                                                          |
| 234                                | State Highway                                                         |
| 234                                | County Highway                                                        |
|                                    | Street, Road, Avenue Name, or Private Drive if shown on Flood Profile |
| RAILROAD                           | Railroad                                                              |
|                                    | Horizontal Reference Grid Line                                        |
|                                    | Horizontal Reference Grid Ticks                                       |
| +                                  | Secondary Grid Crosshairs                                             |
| Land Grant                         | Name of Land Grant                                                    |
| 7                                  | Section Number                                                        |
| R. 43 W. T. 22 N.                  | Range, Township Number                                                |
| <sup>42</sup> 76 <sup>000m</sup> E | Horizontal Reference Grid Coordinates (UTM)                           |
| 365000 FT                          | Horizontal Reference Grid Coordinates (State Plane)                   |
| 80° 16' 52.5"                      | Corner Coordinates (Latitude, Longitude)                              |

# Figure 3: Map Legend for FIRM (continued)

### SECTION 2.0 – FLOODPLAIN MANAGEMENT APPLICATIONS

### 2.1 Floodplain Boundaries

To provide a national standard without regional discrimination, the 1-percent-annualchance (100-year) flood has been adopted by FEMA as the base flood for floodplain management purposes. The 0.2-percent-annual-chance (500-year) flood is employed to indicate additional areas of flood hazard in the community.

Each flooding source included in the project scope has been studied and mapped using professional engineering and mapping methodologies that were agreed upon by FEMA and Madison County as appropriate to the risk level. Flood risk is evaluated based on factors such as known flood hazards and projected impact on the built environment. Engineering analyses were performed for each studied flooding source to calculate its 1-percent-annual-chance flood elevations; elevations corresponding to other floods (e.g. 10-, 4-, 2-, 0.2-percent annual chance, etc.) may have also been computed for certain flooding sources. Engineering models and methods are described in detail in Section 5.0 of this FIS Report. The modeled elevations at cross sections were used to delineate the floodplain boundaries on the FIRM; between cross sections, the boundaries were interpolated using elevation data from various sources. More information on specific mapping methods is provided in Section 6.0 of this FIS Report.

Depending on the accuracy of available topographic data (Table 22), study methodologies employed (Section 5.0), and flood risk, certain flooding sources may be mapped to show both the 1-percent and 0.2-percent-annual-chance floodplain boundaries, regulatory water surface elevations (BFEs), and/or a regulatory floodway. Similarly, other flooding sources may be mapped to show only the 1-percent-annual-chance floodplain boundary on the FIRM, without published water surface elevations. In cases where the 1-percent and 0.2percent-annual-chance floodplain boundaries are close together, only the 1-percentannual-chance floodplain boundary is shown on the FIRM. Figure 3, "Map Legend for FIRM", describes the flood zones that are used on the FIRMs to account for the varying levels of flood risk that exist along flooding sources within the project area. Table 2 and Table 3 indicate the flood zone designations for each flooding source and each community within Madison County, respectively.

Table 2, "Flooding Sources Included in this FIS Report," lists each flooding source, including its study limits, affected communities, mapped zone on the FIRM, and the completion date of its engineering analysis from which the flood elevations on the FIRM and in the FIS Report were derived. Descriptions and dates for the latest hydrologic and hydraulic analyses of the flooding sources are shown in Table 12. Floodplain boundaries for these flooding sources are shown on the FIRM (published separately) using the symbology described in Figure 3. On the map, the 1-percent-annual-chance floodplain corresponds to the SFHAs. The 0.2-percent-annual-chance floodplain shows areas that, although out of the regulatory floodplain, are still subject to flood hazards.

Small areas within the floodplain boundaries may lie above the flood elevations but cannot be shown due to limitations of the map scale and/or lack of detailed topographic data. The procedures to remove these areas from the SFHA are described in Section 6.5 of this FIS Report.

| Flooding Source | Community                                                                                                                                      | Downstream Limit                                                                                         | Upstream Limit                                                                                           | HUC-8<br>Sub-<br>Basin(s) | Length (mi)<br>(streams or<br>coastlines) | Area (ac)<br>(estuaries<br>or ponding) | Floodway<br>(Y/N) | Zone<br>shown on<br>FIRM | Date of<br>Analysis |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------|----------------------------------------|-------------------|--------------------------|---------------------|
| Belt Line Creek | Alton, City of                                                                                                                                 | Approximately 280<br>feet downstream of<br>Burling Drive                                                 | Immediately<br>downstream of<br>Homer M. Adams<br>Parkway                                                | 07110009                  | 0.7                                       |                                        | Y                 | AE                       | July 1978           |
| Black Creek     | Alton, City of; Madison<br>County, Unincorporated<br>Areas                                                                                     | Confluence with<br>West Fork Wood<br>River                                                               | Immediately<br>downstream of North<br>Rodgers Avenue                                                     | 07110009                  | 0.4                                       |                                        | N                 | A                        | N/A                 |
| Black Creek     | Alton, City of                                                                                                                                 | Immediately<br>downstream of<br>North Rodgers<br>Avenue                                                  | Confluence of Coal<br>Branch                                                                             | 07110009                  | 1.3                                       |                                        | Y                 | AE                       | July 1978           |
| Cahokia Creek   | Edwardsville, City of;<br>Hartford, Village of;<br>Madison County,<br>Unincorporated Areas;<br>Roxana, Village of;<br>South Roxana, Village of | Confluence with<br>Mississippi River                                                                     | Approximately 3.14<br>miles upstream of<br>State Route 140                                               | 07110009,<br>07140101     | 20.2                                      |                                        | Y                 | AE                       | 11/17/2019          |
| Cahokia Creek   | Madison County,<br>Unincorporated Areas                                                                                                        | Approximately 3.14<br>miles upstream of<br>State Route 140                                               | Approximately 500<br>feet downstream of<br>confluence of<br>Cahokia Creek<br>Tributary 8 (at XS<br>'AB') | 07140101                  | 3.9                                       |                                        | Y                 | AE                       | June 1979           |
| Cahokia Creek   | Madison County,<br>Unincorporated Areas                                                                                                        | Approximately 500<br>feet downstream of<br>confluence of<br>Cahokia Creek<br>Tributary 8 (at XS<br>'AB') | Madison/St. Clair<br>County Boundary                                                                     | 07140101                  | 6.4                                       |                                        | Y                 | AE                       | June 1979           |

# Table 2: Flooding Sources Included in this FIS Report

| Flooding Source           | Community                                                                               | Downstream Limit                                                          | Upstream Limit                                                            | HUC-8<br>Sub-<br>Basin(s) | Length (mi)<br>(streams or<br>coastlines) | Area (ac)<br>(estuaries<br>or ponding) | Floodway<br>(Y/N) | Zone<br>shown on<br>FIRM | Date of<br>Analysis |
|---------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------|-------------------------------------------|----------------------------------------|-------------------|--------------------------|---------------------|
| Canteen Creek             | Collinsville, City of;<br>Madison County,<br>Unincorporated Areas                       | At Collinsville Road                                                      | Madison/St. Clair<br>County Boundary                                      | 07140101                  | 0.5                                       |                                        | Y                 | AE                       | June 1979           |
| Canteen Creek             | Collinsville, City of;<br>Madison County,<br>Unincorporated Areas                       | St. Clair/Madison<br>County Boundary                                      | Approximately 3,100<br>feet upstream of<br>Interstate 55                  | 07140101                  | 6.0                                       |                                        | Y                 | AE                       | June 1979           |
| Dentons Branch            | Madison County,<br>Unincorporated Areas                                                 | Approximately 0.5<br>miles upstream of<br>confluence with<br>Sherry Creek | Approximately 1.4<br>miles upstream of<br>confluence with<br>Sherry Creek | 07140101                  | 1.4                                       |                                        | N                 | A                        | June 1979           |
| East Alton Ditch          | East Alton, Village of                                                                  | At Wood River<br>D&LD Lower<br>System                                     | Approximately 100<br>feet upstream of<br>Douglas Street                   | 07110009                  | 0.8                                       |                                        | Y                 | AE                       | October 1977        |
| East Fork Sherry<br>Creek | Madison County,<br>Unincorporated Areas                                                 | Mouth at Sherry<br>Creek                                                  | Immediately<br>upstream of Renken<br>Road                                 | 07140101                  | 1.4                                       |                                        | Y                 | AE                       | June 1979           |
| East Fork Silver<br>Creek | Highland, City of;<br>Madison County,<br>Unincorporated Areas                           | Confluence with<br>Silver Creek                                           | State Route 143                                                           | 07140204                  | 14.4                                      |                                        | Y                 | AE                       | June 1979           |
| East Fork Silver<br>Creek | Highland, City of;<br>Madison County,<br>Unincorporated Areas                           | State Route 143                                                           | Approximately 1,400<br>feet downstream of<br>State Route 160              | 07140204                  | 5.0                                       |                                        | N                 | AE                       | June 1979           |
| East Fork Silver<br>Creek | Grantfork, Village of;<br>Highland, City of;<br>Madison County,<br>Unincorporated Areas | Approximately<br>1,400 feet<br>downstream of<br>State Route 160           | Approximately 300<br>feet upstream of<br>Ludwig Road                      | 07140204                  | 2.4                                       |                                        | Y                 | AE                       | June 1979           |
| East Fork Wood<br>River   | Alton, City of; East<br>Alton, Village of;<br>Madison County,<br>Unincorporated Areas   | Confluence with<br>Wood River and<br>West Fork Wood<br>River              | Approximately 1,270<br>feet upstream of<br>State Route 111                | 07110009                  | 2.9                                       |                                        | Y                 | AE                       | 11/17/2019          |

| Flooding Source                                                         | Community                                                                                                                                                              | Downstream Limit                                                | Upstream Limit                                               | HUC-8<br>Sub-<br>Basin(s) | Length (mi)<br>(streams or<br>coastlines) | Area (ac)<br>(estuaries<br>or ponding) | Floodway<br>(Y/N) | Zone<br>shown on<br>FIRM | Date of<br>Analysis |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|---------------------------|-------------------------------------------|----------------------------------------|-------------------|--------------------------|---------------------|
| East Fork Wood<br>River                                                 | Bethalto, Village of;<br>Madison County,<br>Unincorporated Areas                                                                                                       | Approximately<br>1,270 feet upstream<br>of State Route 111      | Approximately 2,000<br>feet upstream of<br>Seiler Road       | 07110009                  | 6.5                                       |                                        | Y                 | AE                       | June 1979           |
| Honeycut Branch                                                         | Madison County,<br>Unincorporated Areas                                                                                                                                | Confluence with<br>West Fork Wood<br>River                      | Approximately<br>10,600 feet<br>upstream of Seiler<br>Road   | 07110009                  | 4.5                                       |                                        | Y                 | AE                       | June 1979           |
| Indian Creek                                                            | Madison County,<br>Unincorporated Areas;<br>Roxana, Village of                                                                                                         | Confluence with<br>Cahokia Creek                                | Approximately 1,200<br>feet upstream of<br>Edwardsville Road | 07140101                  | 3.2                                       |                                        | Y                 | AE                       | 11/17/2019          |
| Indian Creek                                                            | Madison County,<br>Unincorporated Areas;<br>Roxana, Village of                                                                                                         | Approximately<br>1,200 feet upstream<br>of Edwardsville<br>Road | Approximately 120<br>feet upstream of<br>Moro Road           | 07140101                  | 8.7                                       |                                        | Y                 | AE                       | June 1979           |
| Interior Drainage -<br>Metro East Sanitary<br>District Levee<br>Systems | Fairmont City, Village of;<br>Granite City, City of;<br>Madison, City of;<br>Madison County,<br>Unincorporated Areas;<br>Pontoon Beach, Village<br>of; Venice, City of | N/A                                                             | N/A                                                          | 07140101                  |                                           | 2.9                                    | N                 | A, AE, AH                | 06/29/2018          |
| Interior Drainage -<br>Wood River Levee<br>System                       | Hartford, Village of;<br>Madison County,<br>Unincorporated Areas;<br>Roxana, Village of;<br>South Roxana, Village of                                                   | N/A                                                             | N/A                                                          | 07110009,<br>07140101     |                                           | 1.2                                    | N                 | AE, AH                   | 06/29/2018          |
| Interior Drainage -<br>Wood River Upper<br>Levee System                 | Alton, City of; East<br>Alton, Village of;<br>Madison County,<br>Unincorporated Areas                                                                                  | N/A                                                             | N/A                                                          | 07110009                  |                                           | 0.2                                    | Ν                 | AE                       | 03/10/2017          |

| Flooding Source              | Community                                                                                     | Downstream Limit                                                  | Upstream Limit                                             | HUC-8<br>Sub-<br>Basin(s) | Length (mi)<br>(streams or<br>coastlines) | Area (ac)<br>(estuaries<br>or ponding) | Floodway<br>(Y/N) | Zone<br>shown on<br>FIRM | Date of<br>Analysis |
|------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|---------------------------|-------------------------------------------|----------------------------------------|-------------------|--------------------------|---------------------|
| Joulters Creek               | Madison County,<br>Unincorporated Areas                                                       | Confluence with<br>Paddock Creek                                  | Holiday Dam Road                                           | 07140101                  | 0.3                                       |                                        | Y                 | AE                       | June 1979           |
| Joulters Creek               | Madison County,<br>Unincorporated Areas                                                       | Holiday Dam Road                                                  | Waikiki Drive                                              | 07140101                  | 2.1                                       |                                        | N                 | AE                       | June 1979           |
| Joulters Creek               | Madison County,<br>Unincorporated Areas                                                       | Waikiki Drive                                                     | Approximately 450<br>feet upstream of<br>Renken Road       | 07140101                  | 2.3                                       |                                        | Y                 | AE                       | June 1979           |
| Judys Branch                 | Glen Carbon, Village of;<br>Madison County,<br>Unincorporated Areas                           | Approximately<br>1,100 feet<br>downstream of<br>State Highway 157 | Approximately 4,100<br>feet upstream of<br>State Route 159 | 07140101                  | 4.9                                       |                                        | Ν                 | AE                       | November<br>2005    |
| Judys Branch<br>Tributary 5  | Glen Carbon, Village of                                                                       | Confluence with<br>Judys Branch                                   | Confluence with<br>Judys Branch<br>Tributary 5a and 5b     | 07140101                  | 0.5                                       |                                        | N                 | AE                       | November<br>2005    |
| Judys Branch<br>Tributary 5a | Glen Carbon, Village of                                                                       | Confluence with<br>Judys Branch<br>Tributary 5                    | Approximately 1,000<br>feet upstream of<br>State Route 159 | 07140101                  | 0.7                                       |                                        | N                 | AE                       | November<br>2005    |
| Judys Branch<br>Tributary 5b | Glen Carbon, Village of;<br>Madison County,<br>Unincorporated Areas;<br>Maryville, Village of | Confluence with<br>Judys Branch<br>Tributary 5                    | Approximately 4,090<br>feet upstream of<br>State Route 159 | 07140101                  | 1.4                                       |                                        | N                 | AE                       | November<br>2005    |
| Judys Branch<br>Tributary 9  | Glen Carbon, Village of;<br>Madison County,<br>Unincorporated Areas                           | Confluence with<br>Judys Branch                                   | Approximately 610<br>feet upstream of<br>East Ingle Drive  | 07140101                  | 0.2                                       |                                        | N                 | AE                       | November<br>2005    |
| Judys Branch<br>Tributary 9a | Glen Carbon, Village of;<br>Madison County,<br>Unincorporated Areas                           | Confluence with<br>Judys Branch<br>Tributary 9                    | Approximately 160<br>feet upstream of Ash<br>Road          | 07140101                  | 0.4                                       |                                        | N                 | AE                       | November<br>2005    |

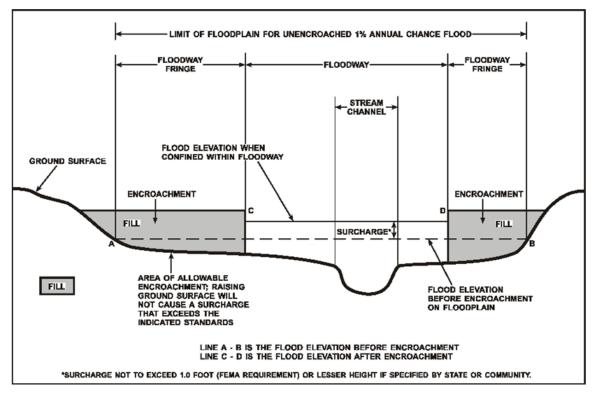
| Flooding Source                 | Community                                                           | Downstream Limit                                                         | Upstream Limit                                                                             | HUC-8<br>Sub-<br>Basin(s) | Length (mi)<br>(streams or<br>coastlines) | Area (ac)<br>(estuaries<br>or ponding) | Floodway<br>(Y/N) | Zone<br>shown on<br>FIRM | Date of<br>Analysis |
|---------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------|----------------------------------------|-------------------|--------------------------|---------------------|
| Judys Branch<br>Tributary 9b    | Madison County,<br>Unincorporated Areas                             | Confluence with<br>Judys Branch<br>Tributary 9                           | Approximately 445<br>feet upstream of<br>confluence with<br>Judys Branch<br>Tributary 9    | 07140101                  | 0.1                                       |                                        | N                 | AE                       | November<br>2005    |
| Judys Branch<br>Tributary 10    | Glen Carbon, Village of                                             | Confluence with<br>Judys Branch                                          | Approximately 450<br>feet upstream of<br>abandoned railroad                                | 07140101                  | 0.1                                       |                                        | N                 | AE                       | November<br>2005    |
| Judys Creek                     | Glen Carbon, Village of;<br>Madison County,<br>Unincorporated Areas | Confluence with<br>Judys Branch                                          | Approximately 1,350<br>feet upstream of<br>Norfolk & Western<br>Railroad                   | 07140101                  | 2.8                                       |                                        | N                 | AE                       | November<br>2005    |
| Judys Creek<br>Tributary B      | Glen Carbon, Village of;<br>Madison County,<br>Unincorporated Areas | Confluence with<br>Judys Creek                                           | Approximately 1,000<br>feet upstream of<br>Timberwolfe Drive                               | 07140101                  | 0.4                                       |                                        | N                 | AE                       | November<br>2005    |
| Laurel Branch                   | Highland, City of;<br>Madison County,<br>Unincorporated Areas       | Confluence with<br>Lindenthal Creek                                      | Approximately 3,190<br>feet upstream of<br>confluence with<br>Laurel Branch<br>Tributary 1 | 07140204                  | 1.4                                       |                                        | Y                 | AE                       | November<br>2021    |
| Laurel Branch<br>Tributary 1    | Highland, City of;<br>Madison County,<br>Unincorporated Areas       | Confluence with<br>Laurel Branch                                         | Approximately 945<br>feet upstream of<br>Willow Creek Drive                                | 07140204                  | 0.3                                       |                                        | Y                 | AE                       | November<br>2021    |
| Lindenthal Creek                | Highland, City of;<br>Madison County,<br>Unincorporated Areas       | Approximately<br>2,440 feet upstream<br>of confluence with<br>Sugar Fork | Approximately 970<br>feet upstream of US<br>Highway 40                                     | 07140204                  | 3.6                                       |                                        | Y                 | AE                       | November<br>2021    |
| Lindenthal Creek<br>Tributary 1 | Highland, City of;<br>Madison County,<br>Unincorporated Areas       | Confluence with<br>Lindenthal Creek                                      | Approximately 1,400<br>feet upstream of<br>Troxler Avenue                                  | 07140204                  | 1.3                                       |                                        | Y                 | AE                       | November<br>2021    |

| Flooding Source                 | Community                                                                                                                                                                                                                         | Downstream Limit                                       | Upstream Limit                                                                                | HUC-8<br>Sub-<br>Basin(s) | Length (mi)<br>(streams or<br>coastlines) | (estuaries | Floodway<br>(Y/N) | Zone<br>shown on<br>FIRM | Date of<br>Analysis |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------|------------|-------------------|--------------------------|---------------------|
| Lindenthal Creek<br>Tributary 2 | Highland, City of;<br>Madison County,<br>Unincorporated Areas                                                                                                                                                                     | Confluence with<br>Lindenthal Creek<br>Tributary 1     | Approximately 410<br>feet upstream of US<br>Highway 40                                        | 07140204                  | 0.6                                       |            | Y                 | AE                       | November<br>2021    |
| Lindenthal Creek<br>Tributary 3 | Highland, City of;<br>Madison County,<br>Unincorporated Areas                                                                                                                                                                     | Confluence with<br>Lindenthal Creek<br>Tributary 2     | Approximately 1,350<br>feet upstream of<br>confluence with<br>Lindenthal Creek<br>Tributary 2 | 07140204                  | 0.3                                       |            | Y                 | AE                       | November<br>2021    |
| Lindenthal Creek<br>Tributary 4 | Highland, City of;<br>Madison County,<br>Unincorporated Areas                                                                                                                                                                     | Confluence with<br>Lindenthal Creek<br>Tributary 1     | Approximately 1,820<br>feet upstream of<br>confluence with<br>Lindenthal Creek<br>Tributary 1 | 07140204                  | 0.3                                       |            | Y                 | AE                       | November<br>2021    |
| Mississippi River               | Alton, City of; East<br>Alton, Village of;<br>Godfrey, Village of;<br>Granite City, City of;<br>Hartford, Village of;<br>Madison, City of;<br>Madison County,<br>Unincorporated Areas;<br>Venice, City of; Wood<br>River, City of | Madison/Jersey<br>County Boundary                      | Madison/St. Clair<br>County Boundary                                                          | 07110009,<br>07140101     | 26.3                                      |            | Y                 | AE                       | 2004                |
| Mooney Creek                    | Madison County,<br>Unincorporated Areas                                                                                                                                                                                           | Confluence with<br>Cahokia Creek                       | Approximately 440<br>feet downstream of<br>Marine Road                                        | 07140101                  | 2.8                                       |            | Y                 | AE                       | June 1979           |
| Mooney Creek                    | Edwardsville, City of;<br>Madison County,<br>Unincorporated Areas                                                                                                                                                                 | Approximately 440<br>feet downstream of<br>Marine Road | Immediately<br>upstream of dam                                                                | 07140101                  | 0.7                                       |            | Y                 | AE                       | May 2003            |

| Flooding Source                 | Community                                                         | Downstream Limit                                                                    | Upstream Limit                                               | HUC-8<br>Sub-<br>Basin(s) | Length (mi)<br>(streams or<br>coastlines) | Area (ac)<br>(estuaries<br>or ponding) | Floodway<br>(Y/N) | Zone<br>shown on<br>FIRM | Date of<br>Analysis |
|---------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------|-------------------------------------------|----------------------------------------|-------------------|--------------------------|---------------------|
| Mooney Creek                    | Edwardsville, City of;<br>Madison County,<br>Unincorporated Areas | Immediately<br>upstream of dam                                                      | Approximately 130<br>feet downstream of<br>East Lake Drive   | 07140101                  | 1.5                                       |                                        | N                 | AE                       | May 2003            |
| Mooney Creek                    | Edwardsville, City of                                             | Approximately 130<br>feet downstream of<br>East Lake Drive                          | Immediately<br>downstream of<br>Goshen Road                  | 07140101                  | 0.9                                       |                                        | Y                 | AE                       | May 2003            |
| Mooney Creek<br>Tributary 1     | Edwardsville, City of                                             | Confluence with<br>Mooney Creek                                                     | Approximately 800<br>feet upstream of<br>Stonebrooke Drive   | 07140101                  | 0.4                                       |                                        | Y                 | AE                       | May 2003            |
| Mooney Creek<br>Tributary 2     | Edwardsville, City of                                             | Confluence with<br>Mooney Creek                                                     | Approximately 1,900<br>feet upstream of<br>Alderwood Court   | 07140101                  | 0.5                                       |                                        | Y                 | AE                       | May 2003            |
| Paddock Creek                   | Madison County,<br>Unincorporated Areas                           | Mouth at Cahokia<br>Creek                                                           | Approximately 1,600<br>feet upstream of<br>Stieglitz Road    | 07140101                  | 10.8                                      |                                        | Y                 | AE                       | June 1979           |
| Sherry Creek                    | Madison County,<br>Unincorporated Areas                           | Confluence with<br>Cahokia Creek                                                    | Immediately<br>downstream of<br>Sherry Creek Road            | 07140101                  | 2.0                                       |                                        | Y                 | AE                       | June 1979           |
| Sherry Creek                    | Madison County,<br>Unincorporated Areas                           | Immediately<br>downstream of<br>Sherry Creek Road                                   | Confluence of East<br>Fork Sherry Creek                      | 07140101                  | 1.2                                       |                                        | Y                 | AE                       | June 1979           |
| Silver Creek                    | Madison County,<br>Unincorporated Areas                           | Approximately<br>10,000 feet<br>downstream of<br>Lebanon Road at<br>county boundary | Approximately 3,000<br>feet upstream of<br>Silver Creek Road | 07140204                  | 38.1                                      |                                        | Y                 | AE                       | June 1979           |
| Silver Creek<br>Tributary No. 1 | Madison County,<br>Unincorporated Areas                           | Confluence with<br>Silver Creek                                                     | Approximately 4,800<br>feet upstream of<br>Conn Road         | 07140204                  | 3.2                                       |                                        | Y                 | AE                       | June 1979           |

| Flooding Source                 | Community                                                                              | Downstream Limit                                                             | Upstream Limit                                                                     | HUC-8<br>Sub-<br>Basin(s) | Length (mi)<br>(streams or<br>coastlines) | Area (ac)<br>(estuaries<br>or ponding) | Floodway<br>(Y/N) | Zone<br>shown on<br>FIRM | Date of<br>Analysis |
|---------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------|-------------------------------------------|----------------------------------------|-------------------|--------------------------|---------------------|
| Silver Creek<br>Tributary No. 2 | Livingston, Village of;<br>Madison County,<br>Unincorporated Areas                     | Confluence with<br>Silver Creek                                              | Missouri Pacific<br>Railroad                                                       | 07140204                  | 5.4                                       |                                        | Y                 | AE                       | June 1979           |
| Smith Lake<br>Tributary         | Madison County,<br>Unincorporated Areas;<br>Roxana, Village of;<br>Wood River, City of | Immediately<br>upstream of East<br>Edwardsville Road                         | Approximately 1,150<br>feet upstream of<br>Wesley Drive                            | 07110009                  | 0.8                                       |                                        | N                 | AE                       | March 1999          |
| Smith Lake<br>Tributary No. 2   | Wood River, City of                                                                    | Confluence with<br>Smith Lake<br>Tributary                                   | Approximately 2,200<br>feet upstream of<br>confluence with<br>Smith Lake Tributary | 07110009                  | 0.4                                       |                                        | N                 | N/A                      | 02/09/2018          |
| Stanley Creek                   | Madison County,<br>Unincorporated Areas                                                | Confluence with<br>East Fork Wood<br>River                                   | Approximately 3,420<br>feet upstream of<br>14th Street                             | 07110009                  | 1.9                                       |                                        | Y                 | AE                       | June 1979           |
| Sugar Fork                      | Madison County,<br>Unincorporated Areas                                                | Confluence with<br>East Fork Silver<br>Creek                                 | Approximately 4,750<br>feet upstream of<br>Mayer Road                              | 07140204                  | 6.6                                       |                                        | Y                 | AE                       | June 1979           |
| Tributary E                     | Madison County,<br>Unincorporated Areas;<br>Wood River, City of                        | Approximately<br>4,100 feet<br>downstream of<br>Valley Drive                 | Approximately 50<br>feet upstream of<br>East Rosedale Drive                        | 07110009                  | 1.5                                       |                                        | Y                 | AE                       | June 1979           |
| Tributary F                     | Madison County,<br>Unincorporated Areas;<br>Wood River, City of                        | Approximately<br>1,600 feet<br>downstream of<br>confluence of<br>Tributary G | Approximately 1,100<br>feet upstream of<br>confluence of<br>Tributary G            | 07110009                  | 0.7                                       |                                        | Y                 | AE                       | June 1979           |
| Tributary G                     | Madison County,<br>Unincorporated Areas;<br>Wood River, City of                        | Confluence with<br>Tributary F                                               | Approximately 50<br>feet upstream of<br>Sitze Street                               | 07110009                  | 0.3                                       |                                        | Y                 | AE                       | June 1979           |

| Flooding Source                 | Community                                                                                                                                                                                       | Downstream Limit                                             | Upstream Limit                                                       | HUC-8<br>Sub-<br>Basin(s) | Length (mi)<br>(streams or<br>coastlines) | Floodway<br>(Y/N) | Zone<br>shown on<br>FIRM | Date of<br>Analysis |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|---------------------------|-------------------------------------------|-------------------|--------------------------|---------------------|
| Tributary X                     | Madison County,<br>Unincorporated Areas                                                                                                                                                         | Confluence with<br>West Fork Wood<br>River                   | Madison/Macoupin<br>County Boundary                                  | 07110009                  | 3.5                                       | Y                 | AE                       | June 1979           |
| Tributary Z                     | Madison County,<br>Unincorporated Areas                                                                                                                                                         | Confluence with<br>Indian Creek                              | Approximately 200<br>feet upstream of<br>Melody Lane                 | 07140101                  | 1.3                                       | Y                 | AE                       | June 1979           |
| West Fork Wood<br>River         | Alton, City of; East<br>Alton, Village of;<br>Madison County,<br>Unincorporated Areas                                                                                                           | Confluence with<br>Wood River and<br>East Fork Wood<br>River | Approximately 800<br>feet upstream of<br>State Route 255             | 07110009                  | 5.9                                       | Y                 | AE                       | 11/17/2019          |
| West Fork Wood<br>River         | Madison County,<br>Unincorporated Areas                                                                                                                                                         | Approximately 800<br>feet upstream of<br>State Route 255     | Approximately 2,200<br>feet upstream of<br>Straube Lane              | 07110009                  | 4.7                                       | Y                 | AE                       | June 1979           |
| Wood River                      | Alton, City of; East<br>Alton, Village of;<br>Madison County,<br>Unincorporated Areas                                                                                                           | Confluence with<br>Mississippi River                         | Confluence of East<br>Fork Wood River<br>and West Fork<br>Wood River | 07110009                  | 2.4                                       | Y                 | AE                       | 11/17/2019          |
| Various Zone A<br>Ponding Areas | Fairmont City, Village of;<br>Granite City, City of;<br>Hartford, Village of;<br>Madison, City of;<br>Madison County,<br>Unincorporated Areas;<br>Pontoon Beach, Village<br>of; Venice, City of | N/A                                                          | N/A                                                                  | 07110009,<br>07140101     |                                           | Ν                 | A                        | Various             |


| Flooding Source                                                                              | Community                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Downstream Limit | Upstream Limit | HUC-8<br>Sub-<br>Basin(s)          | Length (mi)<br>(streams or<br>coastlines) | Floodway<br>(Y/N) | Zone<br>shown on<br>FIRM | Date of<br>Analysis |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|------------------------------------|-------------------------------------------|-------------------|--------------------------|---------------------|
| Various Zone AH<br>Areas not included<br>in Interior Drainage<br>Studies otherwise<br>listed | Fairmont City, Village of;<br>Granite City, City of;<br>Hartford, Village of;<br>Madison, City of;<br>Madison County,<br>Unincorporated Areas;<br>Pontoon Beach, Village<br>of; Venice, City of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A              | N/A            | 07110009,<br>07140101              |                                           | Ν                 | АН                       | Various             |
| Zone A Reaches<br>within Madison<br>County                                                   | Alhambra, Village of;<br>Alton, City of; Bethalto,<br>Village of; Collinsville,<br>City of; East Alton,<br>Village of; Edwardsville,<br>City of; Fairmont City,<br>Village of; Glen Carbon,<br>Village of; Glen Carbon,<br>Village of; Granite City,<br>City of; Grantfork,<br>Village of; Hamel,<br>Village of; Hamel,<br>Village of; Hartford,<br>Village of; Hartford,<br>Village of; Highland, City<br>of; Livington, Village of;<br>Madison County,<br>Unincorporated Areas;<br>Marine, Village of;<br>Pierron, Village of;<br>Pierron, Village of;<br>Pierron, Village of;<br>Pontoon Beach, Village<br>of; Roxana, Village of;<br>Troy, City of;<br>Williamson, Village of;<br>Wood River, City of | Various          | Various        | 07110009.<br>07140101,<br>07140204 | 352.8                                     | Ν                 | A                        | December<br>2015    |

### 2.2 Floodways

Encroachment on floodplains, such as structures and fill, reduces flood-carrying capacity, increases flood heights and velocities, and increases flood hazards in areas beyond the encroachment itself. One aspect of floodplain management involves balancing the economic gain from floodplain development against the resulting increase in flood hazard.

For purposes of the NFIP, a floodway is used as a tool to assist local communities in balancing floodplain development against increasing flood hazard. With this approach, the area of the 1-percent-annual-chance floodplain on a river is divided into a floodway and a floodway fringe based on hydraulic modeling. The floodway is the channel of a stream, plus any adjacent floodplain areas, that must be kept free of encroachment in order to carry the 1-percent-annual-chance flood. The floodway fringe is the area between the floodway and the 1-percent-annual-chance floodplain boundaries where encroachment is permitted. The floodway must be wide enough so that the floodway fringe could be completely obstructed without increasing the water surface elevation of the 1-percent-annual-chance flood at any point. Typical relationships between the floodway and the floodway fringe and their significance to floodplain development are shown in Figure 4.

To participate in the NFIP, Federal regulations require communities to limit increases caused by encroachment to 1.0 foot, provided that hazardous velocities are not produced. Regulations for Illinois require communities in Madison County to limit increases caused by encroachment to 0.1 foot, maintain at least 90% of the storage volume of the 1-percent-annual-chance floodplain and limit increases in velocities to 10%. The floodways in this project are presented to local agencies as minimum standards that can be adopted directly or that can be used as a basis for additional floodway projects.



### Figure 4: Floodway Schematic

Floodway widths presented in this FIS Report and on the FIRM were computed at cross sections. Between cross sections, the floodway boundaries were interpolated. For certain stream segments, floodways were adjusted so that the amount of floodwaters conveyed on each side of the floodplain would be reduced equally. The results of the floodway computations have been tabulated for selected cross sections and are shown in Table 23, "Floodway Data."

All floodways that were developed for this Flood Risk Project are shown on the FIRM using the symbology described in Figure 3. In cases where the floodway and 1-percent-annualchance floodplain boundaries are either close together or collinear, only the floodway boundary has been shown on the FIRM. For information about the delineation of floodways on the FIRM, refer to Section 6.3.

All flowage easement areas relevant to this Flood Risk Project are shown on the FIRM using the symbology described in Figure 3. This data was provided by the U.S. Army Corps of Engineers, St. Louis District and is current as of June 2021. For information about the delineation of flowage easement areas in this Flood Risk Project, please contact U.S. Army Corps of Engineers, St. Louis District Levee Safety Program Manager at (314) 331-8425.

### 2.3 Base Flood Elevations

The hydraulic characteristics of flooding sources were analyzed to provide estimates of the elevations of floods of the selected recurrence intervals. The BFE is the elevation of the 1-percent-annual-chance flood. These BFEs are most commonly rounded to the whole

foot, as shown on the FIRM, but in certain circumstances or locations they may be rounded to 0.1 foot. Cross section lines shown on the FIRM may also be labeled with the BFE rounded to 0.1 foot. Whole-foot BFEs derived from engineering analyses that apply to coastal areas, areas of ponding, or other static areas with little elevation change may also be shown at selected intervals on the FIRM.

BFEs are primarily intended for flood insurance rating purposes. Cross sections with BFEs shown on the FIRM correspond to the cross sections shown in the Floodway Data table and Flood Profiles in this FIS Report. For construction and/or floodplain management purposes, users are cautioned to use the flood elevation data presented in this FIS Report in conjunction with the data shown on the FIRM. For example, the user may use the FIRM to determine the stream station of a location of interest and then use the profile to determine the 1-percent annual chance elevation at that location. Because only selected cross sections may be shown on the FIRM for riverine areas, the profile should be used to obtain the flood elevation between mapped cross sections. Additionally, for riverine areas, whole-foot elevations shown on the FIRM may not exactly reflect the elevations derived from the hydraulic analyses; therefore, elevations obtained from the profile may more accurately reflect the results of the hydraulic analysis.

# 2.4 Non-Encroachment Zones

This section is not applicable to this Flood Risk Project.

# 2.5 Coastal Flood Hazard Areas

This section is not applicable to this Flood Risk Project.

# 2.5.1 Water Elevations and the Effects of Waves

This section is not applicable to this Flood Risk Project.

# Figure 5: Wave Runup Transect Schematic [Not Applicable to this Flood Risk Project]

# 2.5.2 Floodplain Boundaries and BFEs for Coastal Areas

This section is not applicable to this Flood Risk Project.

# 2.5.3 Coastal High Hazard Areas

This section is not applicable to this Flood Risk Project.

# Figure 6: Coastal Transect Schematic [Not Applicable to this Flood Risk Project]

# 2.5.4 Limit of Moderate Wave Action

This section is not applicable to this Flood Risk Project.

# **SECTION 3.0 – INSURANCE APPLICATIONS**

#### 3.1 National Flood Insurance Program Insurance Zones

For flood insurance applications, the FIRM designates flood insurance rate zones as described in Figure 3, "Map Legend for FIRM." Flood insurance zone designations are assigned to flooding sources based on the results of the hydraulic or coastal analyses. Insurance agents use the zones shown on the FIRM and depths and base flood elevations in this FIS Report in conjunction with information on structures and their contents to assign premium rates for flood insurance policies.

The 1-percent-annual-chance floodplain boundary corresponds to the boundary of the areas of special flood hazards (e.g. Zones A, AE, V, VE, etc.), and the 0.2-percent-annual-chance floodplain boundary corresponds to the boundary of areas of additional flood hazards.

Table 3 lists the flood insurance zones in Madison County.

| Community                            | Flood Zone(s) |
|--------------------------------------|---------------|
| Alhambra, Village of                 | A, X          |
| Alton, City of                       | A, AE, AH, X  |
| Bethalto, Village of                 | A, AE, X      |
| Collinsville, City of                | A, AE, AH, X  |
| East Alton, Village of               | A, AE, AH, X  |
| Edwardsville, City of                | A, AE, AH, X  |
| Fairmont City, Village of            | A, AH, X      |
| Glen Carbon, Village of              | A, AE, AH, X  |
| Godfrey, Village of                  | A, AE, X      |
| Granite City, City of                | A, AE, AH, X  |
| Grantfork, Village of                | A, AE, X      |
| Hamel, Village of                    | A, X          |
| Hartford, Village of                 | A, AE, AH, X  |
| Highland, City of                    | A, AE, X      |
| Livingston, Village of               | A, AE, X      |
| Madison, City of                     | A, AE, AH, X  |
| Madison County, Unincorporated Areas | A, AE, AH, X  |
| Marine, Village of                   | A, X          |
| Maryville, Village of                | A, AE, X      |
| New Douglas, Village of              | X             |
| Pierron, Village of                  | A, X          |
| Pontoon Beach, Village of            | A, AE, AH, X  |
| Roxana, Village of                   | A, AE, AH, X  |
| South Roxana, Village of             | AE, AH, X     |
| St. Jacob, Village of                | X             |
| Troy, City of                        | A, X          |

#### **Table 3: Flood Zone Designations by Community**

| Community              | Flood Zone(s) |  |  |
|------------------------|---------------|--|--|
| Venice, City of        | A, AE, AH, X  |  |  |
| Williamson, Village of | A, X          |  |  |
| Wood River, City of    | A, AE, AH, X  |  |  |
| Worden, Village of     | Х             |  |  |

# Table 3: Flood Zone Designations by Community (continued)

# SECTION 4.0 – AREA STUDIED

# 4.1 Basin Description

Table 4 contains a description of the characteristics of the HUC-8 sub-basins within which each community falls. The table includes the main flooding sources within each basin, a brief description of the basin, and its drainage area.

| HUC-8<br>Sub-Basin<br>Name | HUC-8<br>Sub-Basin<br>Number | Primary<br>Flooding<br>Source | Description of Affected Area                                                    | Drainage Area<br>(square miles) |
|----------------------------|------------------------------|-------------------------------|---------------------------------------------------------------------------------|---------------------------------|
| Cahokia-<br>Joachim        | 07140101                     | Mississippi<br>River          | The western portion of<br>Madison County is contained<br>in this watershed.     | 1,646                           |
| Lower<br>Kaskaskia         | 07140204                     | Silver Creek                  | The eastern portion of Madison<br>County is contained in this<br>watershed.     | 1,606                           |
| Peruque-<br>Piasa          | 07110009                     | Peruque<br>Creek              | The northwestern corner of<br>Madison County is contained<br>in this watershed. | 669                             |
| Shoal                      | 07140203                     | Shoal Creek                   | The northeastern corner of<br>Madison County is contained<br>in this watershed. | 917                             |

**Table 4: Basin Characteristics** 

# 4.2 Principal Flood Problems

Table 5 contains a description of the principal flood problems that have been noted for Madison County by flooding source.

| Flooding<br>Source | Description of Flood Problems                                     |
|--------------------|-------------------------------------------------------------------|
| Belt Line<br>Creek | Flooding occurs periodically as a result of heavy local rainfall. |
| Black Creek        | Flooding occurs periodically as a result of heavy local rainfall. |
| Canteen<br>Creek   | Flooding occurs periodically as a result of heavy local rainfall. |

Table 5: Principal Flood Problems

| Flooding<br>Source      | Description of Flood Problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| East Alton<br>Ditch     | Lack of topographical relief encourages internal ponding behind the levee.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| East Fork<br>Wood River | Flooding occurs periodically as a result of heavy local rainfall.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mississippi<br>River    | Areas landward of the levees are subject to flooding due to interior drainage.<br>Floods have occurred on the Mississippi River in all seasons. However, an<br>analysis of the dominant seasonal characteristics of floods indicate that the<br>flood season is April through June, with 75 percent of floods occurring during<br>this period. Some of the most serious floods were associated with spring<br>thaws. Major floods from the Mississippi River have occurred in 1785, 1844,<br>1903, 1927, 1943, 1944, 1951, 1969, 1973, 1982, 1983, 1993, 1994, 1995,<br>1996, 2001, 2003, 2013, 2016, 2017 and 2019. |

Table 6 contains information about historic flood elevations in the communities within Madison County.

| Table 6: Histo | oric Flooding | j Elevati | ons |  |
|----------------|---------------|-----------|-----|--|
|                | 1.12. 4       |           |     |  |

| Flooding<br>Source   | Location                                                        | Historic<br>Peak (Feet<br>NAVD88) | Event<br>Date | Approximate<br>Recurrence<br>Interval (years) | Source of<br>Data                                   |
|----------------------|-----------------------------------------------------------------|-----------------------------------|---------------|-----------------------------------------------|-----------------------------------------------------|
| Mississippi<br>River | Industrial and<br>commercial areas<br>near the City of<br>Alton | 432.2                             | 1973          | 35                                            | US<br>Geological<br>Survey,<br>Water Data<br>Report |

# 4.3 Dams and Other Flood Hazard Reduction Measures

Table 7 contains information about non-levee flood hazard reduction measures within Madison County such as dams or jetties. Levee systems are addressed in Section 4.4 of this FIS Report.

# Table 7: Dams and Other Flood Hazard Reduction Measures

# [Not Applicable to this Flood Risk Project]

# 4.4 Levee Systems

For purposes of the NFIP, FEMA only recognizes levee systems that meet, and continue to meet, minimum design, operation, and maintenance standards that are consistent with comprehensive floodplain management criteria. The Code of Federal Regulations, Title 44, Section 65.10 (44 CFR 65.10) describes the information needed for FEMA to determine if a levee system reduces the flood hazard from the 1-percent-annual-chance flood. This information must be supplied to FEMA by the community or other party when a flood risk study or restudy is conducted, when FIRMs are revised, or upon FEMA request. FEMA reviews the information for the purpose of establishing the appropriate flood hazard zone.

Levee systems that are determined to reduce the hazard from the 1-percent-annualchance flood are accredited by FEMA. FEMA can also grant provisional accreditation to a levee system that was previously accredited on an effective FIRM and for which FEMA is awaiting data and/or documentation to demonstrate compliance with 44 CFR 65.10. These levee systems are referred to as Provisionally Accredited Levees, or PALs. Provisional accreditation provides communities and levee owners with a specified timeframe to obtain the necessary data to confirm the levee system's accreditation status. Accredited levee systems and PALs are shown on the FIRM using the symbology shown in Figure 3. If the required information for a PAL is not submitted within the required timeframe, or if information indicates that a levee system no longer meets 44 CFR 65.10, FEMA will consider the levee system as non-accredited and issue an effective FIRM showing the levee-impacted area as a SFHA or Zone D.

FEMA coordinated with USACE, local communities, and other organizations to compile a list of levee systems that exist within Madison County. Table 8, "Levee Systems," lists all accredited levee systems, PALs, and non-accredited levee systems shown on the FIRM for this FIS Report. Other categories of levees may also be included in the table. Levee systems identified in the table are displayed on the FIRM with notes to users to indicate their flood hazard mapping status.

Please note that the information presented in Table 8 is subject to change at any time. For that reason, the latest information regarding the levee systems presented in the table may be obtained by accessing the National Levee Database. For additional information, contact the levee owner/sponsor or the local community shown in Table 30.

| Community                                                                                                                                                                               | Flooding<br>Source(s)                                                                                       | NLD Levee<br>System ID | NLD Levee<br>System<br>Name                         | Levee System<br>Status on<br>Effective FIRM | FIRM Panel(s)                                                                                                                                | Levee Owner(s)<br>/ Sponsor(s)                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Madison County,<br>Unincorporated Areas;<br>Roxana, Village of                                                                                                                          | Cahokia<br>Creek                                                                                            | 1505000803             | Private<br>Levee on<br>Cahokia<br>Creek             | Non-<br>Accredited                          | 17119C0191D, 17119C0192D                                                                                                                     | Wood River<br>Levee and<br>Drainage<br>District                   |
| Granite City, City of;<br>Hartford, Village of;<br>Madison County,<br>Unincorporated Areas;<br>Madison, City of; South<br>Roxana, Village of; Venice,<br>City of                        | Mississippi<br>River,<br>Cahokia<br>Creek                                                                   | 5605300001             | MESD /<br>Chain of<br>Rocks East<br>Levee<br>System | Accredited                                  | 17119C0169D, 17119C0186D,<br>17119C0187D, 17119C0188D,<br>17119C0191D, 17119C0192D,<br>17119C0306D, 17119C0307D,<br>17119C0308D, 17119C0316D | Metro East<br>Sanitary District,<br>USACE – St.<br>Louis District |
| Alton, City of; East Alton,<br>Village of; Hartford, Village<br>of; Madison County,<br>Unincorporated Areas;<br>Roxana, Village of; South<br>Roxana, Village of; Wood<br>River, City of | Mississippi<br>River,<br>Wood<br>River, East<br>Fork Wood<br>River,<br>Cahokia<br>Creek,<br>Indian<br>Creek | 5605470001             | Wood River<br>D&LD Lower<br>System                  | Accredited                                  | 17119C0044D, 17119C0063D,<br>17119C0157D, 17119C0176D,<br>17119C0178D, 17119C0183D,<br>17119C0186D, 17119C0187D,<br>17119C0191D              | Wood River<br>Drainage &<br>Levee District,<br>Union Pacific      |
| Alton, City of; East Alton,<br>Village of; Madison County,<br>Unincorporated Areas                                                                                                      | Mississippi<br>River,<br>Wood<br>River                                                                      | 5605470002             | Wood River<br>D&LD Upper<br>System                  | Accredited                                  | 17119C0043D, 17119C0044D,<br>17119C0063D, 17119C0157D                                                                                        | Wood River<br>Drainage &<br>Levee District                        |
| Alton, City of; East Alton,<br>Village of                                                                                                                                               | East Fork<br>Wood<br>River,<br>West Fork<br>Wood<br>River                                                   | 5605470003             | Wood River<br>D&LD East<br>and West<br>System       | Accredited                                  | 17119C0063D, 17119C0064D                                                                                                                     | Wood River<br>Drainage &<br>Levee District                        |

# Table 8: Levee Systems

# Table 8: Levee Systems (continued)

| Community                                                    | Flooding<br>Source(s) | NLD Levee<br>System ID | NLD Levee<br>System<br>Name                                       | Levee System<br>Status on<br>Effective FIRM | FIRM Panel(s)                                                                                                   | Levee Owner(s)<br>/ Sponsor(s)                                      |
|--------------------------------------------------------------|-----------------------|------------------------|-------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Madison, City of; Madison<br>County, Unincorporated<br>Areas | Mississippi<br>River  | 5605920001             | Chouteau<br>Island /<br>Chain of<br>Rocks West<br>Levee<br>System | Non-<br>Accredited                          | 17119C0167D, 17119C0168D,<br>17119C0169D, 17119C0186D,<br>17119C0304D, 17119C0306D,<br>17119C0307D, 17119C0308D | USACE – St.<br>Louis District,<br>Chouteau Island<br>Levee District |

# **SECTION 5.0 – ENGINEERING METHODS**

For the flooding sources in the community, standard hydrologic and hydraulic study methods were used to determine the flood hazard data required for this study. Flood events of a magnitude that are expected to be equaled or exceeded at least once on the average during any 10-, 25-, 50-, 100-, or 500-year period (recurrence interval) have been selected as having special significance for floodplain management and for flood insurance rates. These events, commonly termed the 10-, 25-, 50-, 100-, and 500-year floods, have a 10-, 4-, 2-, 1-, and 0.2-percent-annual-chance, respectively, of being equaled or exceeded during any year.

Although the recurrence interval represents the long-term, average period between floods of a specific magnitude, rare floods could occur at short intervals or even within the same year. The risk of experiencing a rare flood increases when periods greater than 1 year are considered. For example, the risk of having a flood that equals or exceeds the 100-year flood (1-percent chance of annual exceedance) during the term of a 30-year mortgage is approximately 26 percent (about 3 in 10); for any 90-year period, the risk increases to approximately 60 percent (6 in 10). The analyses reported herein reflect flooding potentials based on conditions existing in the community at the time of completion of this study. Maps and flood elevations will be amended periodically to reflect future changes.

In addition to these flood events, the "1-percent-plus", or "1%+", annual chance flood elevation has been modeled for certain flooding sources in this FIS Report. While not used for regulatory or insurance purposes, this flood event has been calculated to help illustrate the variability range that exists between the regulatory 1-percent-annual-chance flood elevation and a 1-percent-annual-chance elevation that has taken into account an additional amount of uncertainty in the flood discharges (thus, the 1% "plus"). For flooding sources whose discharges were estimated using regression equations, the 1%+ flood elevations are derived by taking the 1-percent-annual-chance flood discharges and increasing the modeled discharges by a percentage equal to the average predictive error for the regression equation. For flooding sources with gage- or rainfall-runoff-based discharge estimates, the upper 84-percent confidence limit of the discharges is used to compute the 1%+ flood elevations.

The engineering analyses described here incorporate the results of previously issued Letters of Map Change (LOMCs) listed in Table 26, "Incorporated Letters of Map Change", which include Letters of Map Revision (LOMRs). For more information about LOMRs, refer to Section 6.5, "FIRM Revisions."

# 5.1 Hydrologic Analyses

Hydrologic analyses were carried out to establish the peak elevation-frequency relationships for floods of the selected recurrence intervals for each flooding source studied. Hydrologic analyses are typically performed at the watershed level. Depending on factors such as watershed size and shape, land use and urbanization, and natural or man-made storage, various models or methodologies may be applied. A summary of the hydrologic methods applied to develop the discharges used in the hydraulic analyses for

each stream is provided in Table 12. Greater detail (including assumptions, analysis, and results) is available in the archived project documentation.

A summary of the discharges is provided in Table 9. Frequency Discharge-Drainage Area A summary of stillwater elevations developed for non-coastal flooding sources is provided in Table 10. Stream gage information is provided in Table 11. Discharges for riverine flooding sources designated as Zone A on the FIRM are not shown in Table 9 of this FIS report, however discharge values are included in the FIRM database in the S\_Nodes and L\_Summary\_Discharges feature classes.

|                 |                                                                   | Drainage                  | Peak Discharge (cfs) |                     |                     |                     |                       |
|-----------------|-------------------------------------------------------------------|---------------------------|----------------------|---------------------|---------------------|---------------------|-----------------------|
| Flooding Source | Location                                                          | Area<br>(Square<br>Miles) | 10% Annual<br>Chance | 4% Annual<br>Chance | 2% Annual<br>Chance | 1% Annual<br>Chance | 0.2% Annual<br>Chance |
| Belt Line Creek | At mouth                                                          | 1.16                      | 722                  | *                   | 1,169               | 1,300               | 1,513                 |
| Belt Line Creek | At Burling Drive                                                  | 0.99                      | 1,041                | *                   | 1,437               | 1,587               | 1,883                 |
| Black Creek     | At mouth                                                          | 5.25                      | 2,456                | *                   | 3,584               | 3,954               | 4,589                 |
| Black Creek     | Immediately upstream of<br>confluence of Coal Branch              | 0.83                      | 816                  | *                   | 1,162               | 1,285               | 1,490                 |
| Cahokia Creek   | At US Route 255                                                   | 260.5                     | 11,937               | 14,559              | 16,539              | 18,614              | 23,628                |
| Cahokia Creek   | Immediately below<br>confluence with Indian Creek                 | 260.2                     | 11,996               | 14,643              | 16,643              | 18,739              | 23,807                |
| Cahokia Creek   | Approximately 8,125 feet<br>above confluence with Indian<br>Creek | 217.5                     | 10,679               | 12,591              | 14,067              | 15,605              | 19,396                |
| Cahokia Creek   | At USGS Gage 05587900:<br>Cahokia Creek at<br>Edwardsville, IL    | 212.0                     | 10,448               | 12,170              | 13,501              | 14,876              | 18,294                |
| Cahokia Creek   | Immediately above<br>confluence with Mooney<br>Creek              | 205.2                     | 10,046               | 11,850              | 13,243              | 14,695              | 18,274                |
| Cahokia Creek   | Immediately below<br>confluence with Sherry<br>Creek              | 145.8                     | 7,658                | 9,590               | 11,042              | 12,569              | 16,234                |
| Cahokia Creek   | Immediately above<br>confluence with Sherry<br>Creek              | 117.6                     | 6,592                | 8,421               | 9,783               | 11,214              | 14,614                |
| Cahokia Creek   | At Madison County line                                            | 78.3                      | 10,300               | *                   | 16,300              | 19,700              | 24,100                |

#### Table 9: Summary of Discharges

\*Not calculated for this Flood Risk Project

<sup>&</sup>lt;sup>1</sup>Peak discharge is a result of HEC-RAS 1D unsteady-state model used to determine discharges for steady-state regulatory elevations. These discharge values represent the peak discharge in the specific model run conducted for this study. These discharges should not be used in isolation and should only be applied in consideration of the overall hydrologic and hydraulic behavior represented in the model.

|                           |                                                               | Drainage Peak Discharge (cfs) |                      |                     |                     |                     |                       |
|---------------------------|---------------------------------------------------------------|-------------------------------|----------------------|---------------------|---------------------|---------------------|-----------------------|
| Flooding Source           | Location                                                      | Area<br>(Square<br>Miles)     | 10% Annual<br>Chance | 4% Annual<br>Chance | 2% Annual<br>Chance | 1% Annual<br>Chance | 0.2% Annual<br>Chance |
| Canteen Creek             | At State Route 157 (In St<br>Clair County)                    | 22.6                          | 4,300                | *                   | 7,000               | 8,400               | 11,000                |
| Canteen Creek             | At State Route 159 (In St<br>Clair County)                    | 20.1                          | 4,500                | *                   | 7,100               | 8,600               | 11,100                |
| Canteen Creek             | At South Mulberry Road                                        | 16.2                          | 4,100                | *                   | 6,600               | 8,000               | 10,300                |
| Canteen Creek             | At Lebanon Road                                               | 10.3                          | 3,900                | *                   | 6,300               | 7,500               | 9,600                 |
| East Alton Ditch          | At mouth                                                      | 0.48                          | 350                  | *                   | 502                 | 612                 | 780                   |
| East Fork Silver<br>Creek | At mouth                                                      | 98.2                          | 7,000                | *                   | 12,500              | 15,200              | 19,200                |
| East Fork Silver<br>Creek | Immediately downstream of<br>confluence of Sugar Fork         | 88.0                          | 7,300                | *                   | 12,950              | 15,500              | 19,500                |
| East Fork Silver<br>Creek | At Highland Silver Lake Dam                                   | 47.5                          | 4,500                | *                   | 7,450               | 9,000               | 11,300                |
| East Fork Wood<br>River   | At Winchester Access Road                                     | 62.1                          | 6,777                | 9,094               | 10,822              | 12,674              | 17,980                |
| East Fork Wood<br>River   | Approximately 1,505 feet<br>below West MacArthur<br>Boulevard | 59.6                          | 6,668                | 8,870               | 10,512              | 12,285              | 17,660                |
| East Fork Wood<br>River   | Immediately below<br>confluence with Stanley<br>Creek         | 58                            | 6,529                | 8,656               | 10,223              | 11,961              | 17,451                |
| East Fork Wood<br>River   | At McCoy Road                                                 | 44.8                          | 7,500                | *                   | 11,600              | 14,200              | 18,800                |
| Honeycut Branch           | At mouth                                                      | 17.5                          | 2,900                | *                   | 4,700               | 5,700               | 7,700                 |
| Indian Creek              | At USGS Gage 05588000:<br>Indian Creek at Wanda, IL           | 36.7                          | 4,604                | 6,361               | 7,840               | 9,465               | 13,869                |

\*Not calculated for this Flood Risk Project

<sup>1</sup>Peak discharge is a result of HEC-RAS 1D unsteady-state model used to determine discharges for steady-state regulatory elevations. These discharge values represent the peak discharge in the specific model run conducted for this study. These discharges should not be used in isolation and should only be applied in consideration of the overall hydrologic and hydraulic behavior represented in the model.

| Table 9 : Summary of Discharges (continued) |
|---------------------------------------------|
|---------------------------------------------|

|                              |                                                                         | Drainage                  | <b>U</b> ( )         |                     |                     |                     |                       |  |
|------------------------------|-------------------------------------------------------------------------|---------------------------|----------------------|---------------------|---------------------|---------------------|-----------------------|--|
| Flooding Source              | Location                                                                | Area<br>(Square<br>Miles) | 10% Annual<br>Chance | 4% Annual<br>Chance | 2% Annual<br>Chance | 1% Annual<br>Chance | 0.2% Annual<br>Chance |  |
| Indian Creek                 | East Roosevelt Drive                                                    | 18.1                      | 3,100                | *                   | 4,900               | 6,000               | 7,300                 |  |
| Joulters Creek               | At mouth                                                                | 6.3                       | 500                  | *                   | 900                 | 1,100               | 1,400                 |  |
| Judys Branch                 | Immediately downstream of<br>State Highway 157                          | 7.75                      | 2,245                | *                   | 3,623               | 4,736               | 6,847                 |  |
| Judys Branch                 | Immediately downstream of<br>confluence of Judys Creek                  | 7.00                      | 2,229                | *                   | 3,604               | 4,706               | 6,719                 |  |
| Judys Branch                 | Immediately upstream of<br>Collinsville Street                          | 4.45                      | 1,540                | *                   | 2,504               | 3,264               | 4,539                 |  |
| Judys Branch                 | Immediately downstream of<br>confluence of Judys Branch<br>Tributary 5  | 4.05                      | 1,489                | *                   | 2,410               | 3,139               | 4,292                 |  |
| Judys Branch                 | Immediately upstream of<br>Glen Crossing Road                           | 2.72                      | 1,078                | *                   | 1,744               | 2,256               | 3,021                 |  |
| Judys Branch                 | Immediately upstream of I-<br>270                                       | 2.09                      | 957                  | *                   | 1,559               | 1,857               | 2,459                 |  |
| Judys Branch                 | Immediately downstream of<br>confluence of Judys Branch<br>Tributary 9  | 1.99                      | 886                  | *                   | 1,438               | 1,858               | 2,465                 |  |
| Judys Branch                 | Immediately downstream of<br>confluence of Judys Branch<br>Tributary 10 | 1.67                      | 732                  | *                   | 1,194               | 1,545               | 2,036                 |  |
| Judys Branch                 | At State Route 159                                                      | 1.43                      | 608                  | *                   | 1,001               | 1,299               | 1,724                 |  |
| Judys Branch                 | Approximately 1,550 feet<br>upstream of State Route 159                 | 0.34                      | 177                  | *                   | 289                 | 372                 | 487                   |  |
| Judys Branch<br>Tributary 10 | At mouth                                                                | 0.24                      | 126                  | *                   | 195                 | 247                 | 321                   |  |

\*Not calculated for this Flood Risk Project

<sup>1</sup>Peak discharge is a result of HEC-RAS 1D unsteady-state model used to determine discharges for steady-state regulatory elevations. These discharge values represent the peak discharge in the specific model run conducted for this study. These discharges should not be used in isolation and should only be applied in consideration of the overall hydrologic and hydraulic behavior represented in the model.

|                              |                                                                                  | Drainage                  | Peak Discharge (cfs) |                     |                     |                     |                       |  |  |
|------------------------------|----------------------------------------------------------------------------------|---------------------------|----------------------|---------------------|---------------------|---------------------|-----------------------|--|--|
| Flooding Source              | Location                                                                         | Area<br>(Square<br>Miles) | 10% Annual<br>Chance | 4% Annual<br>Chance | 2% Annual<br>Chance | 1% Annual<br>Chance | 0.2% Annual<br>Chance |  |  |
| Judys Branch<br>Tributary 5  | At mouth                                                                         | 1.01                      | 393                  | *                   | 643                 | 842                 | 1,129                 |  |  |
| Judys Branch<br>Tributary 5a | Approximately 1,000 feet<br>upstream of State Route 159                          | 0.29                      | 126                  | *                   | 208                 | 270                 | 359                   |  |  |
| Judys Branch<br>Tributary 5b | Approximately 750 feet<br>upstream of State Route 159                            | 0.21                      | 98                   | *                   | 162                 | 211                 | 278                   |  |  |
| Judys Branch<br>Tributary 5b | Approximately 4,200 feet<br>upstream of State Route 159                          | 0.05                      | 31                   | *                   | 49                  | 63                  | 81                    |  |  |
| Judys Branch<br>Tributary 9  | At mouth                                                                         | 0.32                      | 124                  | *                   | 197                 | 254                 | 338                   |  |  |
| Judys Branch<br>Tributary 9a | Immediately upstream of<br>confluence with Judys Creek<br>Tributary 9            | 0.16                      | 80                   | *                   | 125                 | 158                 | 206                   |  |  |
| Judys Branch<br>Tributary 9b | Immediately upstream of<br>confluence with Judys Creek<br>Tributary 9            | 0.05                      | 16                   | *                   | 29                  | 39                  | 53                    |  |  |
| Judys Creek                  | Approximately 440 feet<br>downstream of I-270                                    | 1.85                      | 714                  | *                   | 1,142               | 1,477               | 1,987                 |  |  |
| Judys Creek                  | Approximately 2,100 feet<br>upstream of I-270                                    | 1.31                      | 546                  | *                   | 874                 | 1,129               | 1,503                 |  |  |
| Judys Creek                  | Immediately downstream of<br>confluence of Judys Creek<br>Tributary B            | 1.12                      | 498                  | *                   | 801                 | 1,029               | 1,356                 |  |  |
| Judys Creek                  | Approximately 2,520 feet<br>upstream of confluence of<br>Judys Creek Tributary B | 0.73                      | 326                  | *                   | 527                 | 681                 | 895                   |  |  |
| Judys Creek                  | At upstream Limit of Study                                                       | 0.08                      | 26                   | *                   | 43                  | 56                  | 77                    |  |  |

\*Not calculated for this Flood Risk Project

<sup>1</sup>Peak discharge is a result of HEC-RAS 1D unsteady-state model used to determine discharges for steady-state regulatory elevations. These discharge values represent the peak discharge in the specific model run conducted for this study. These discharges should not be used in isolation and should only be applied in consideration of the overall hydrologic and hydraulic behavior represented in the model.

|                              |                                                                                    | Drainage                  |                      |                     | Peak Discharge      | (cfs)               |                       |
|------------------------------|------------------------------------------------------------------------------------|---------------------------|----------------------|---------------------|---------------------|---------------------|-----------------------|
| Flooding Source              | Location                                                                           | Area<br>(Square<br>Miles) | 10% Annual<br>Chance | 4% Annual<br>Chance | 2% Annual<br>Chance | 1% Annual<br>Chance | 0.2% Annual<br>Chance |
| Judys Creek<br>Tributary B   | At mouth                                                                           | 0.31                      | 163                  | *                   | 260                 | 332                 | 433                   |
| Laurel Branch                | Immediately downstream of<br>Parkhill Drive                                        | 1.83                      | 1,045 <sup>1</sup>   | 1,546 <sup>1</sup>  | 1,920 <sup>1</sup>  | 2,243 <sup>1</sup>  | 3,148 <sup>1</sup>    |
| Laurel Branch                | Immediately upstream of<br>Willow Creek Drive                                      | 1.65                      | 1,071 <sup>1</sup>   | 1,453 <sup>1</sup>  | 1,940 <sup>1</sup>  | 2,269 <sup>1</sup>  | 3,238 <sup>1</sup>    |
| Laurel Branch                | Approximately 3,190 feet<br>upstream of confluence of<br>Laurel Branch Tributary 1 | 1.33                      | 835 <sup>1</sup>     | 1,246 <sup>1</sup>  | 1,620 <sup>1</sup>  | 2,043 <sup>1</sup>  | 2,757 <sup>1</sup>    |
| Laurel Branch<br>Tributary 1 | Immediately downstream of<br>Willow Creek Drive                                    | 0.052                     | 39 <sup>1</sup>      | 62 <sup>1</sup>     | 79 <sup>1</sup>     | 31 <sup>1</sup>     | 47 <sup>1</sup>       |
| Laurel Branch<br>Tributary 1 | Approximately 940 feet<br>upstream of Willow Creek<br>Drive                        | 0.028                     | 37 <sup>1</sup>      | 581                 | 77 <sup>1</sup>     | 101 <sup>1</sup>    | 143 <sup>1</sup>      |
| Lindenthal Creek             | Approximately 2,580 feet<br>upstream of confluence with<br>Sugar Creek             | 5.864                     | 2,029 <sup>1</sup>   | 2,725 <sup>1</sup>  | 3,394 <sup>1</sup>  | 4,101 <sup>1</sup>  | 5,569 <sup>1</sup>    |
| Lindenthal Creek             | Approximately 250 feet<br>downstream of confluence of<br>Laurel Branch             | 5.194                     | 2,056 <sup>1</sup>   | 2,777 <sup>1</sup>  | 3,441 <sup>1</sup>  | 4,201 <sup>1</sup>  | 5,647 <sup>1</sup>    |
| Lindenthal Creek             | Approximately 660 feet<br>upstream of confluence of<br>Laurel Branch               | 3.364                     | 1,040 <sup>1</sup>   | 1,271 <sup>1</sup>  | 1,588 <sup>1</sup>  | 1,863 <sup>1</sup>  | 2,429 <sup>1</sup>    |
| Lindenthal Creek             | Approximately 170 feet<br>upstream of Broadway                                     | 2.844                     | 925 <sup>1</sup>     | 1,127 <sup>1</sup>  | 1,353 <sup>1</sup>  | 1,465 <sup>1</sup>  | 2,144 <sup>1</sup>    |
| Lindenthal Creek             | Approximately 100 feet downstream of Broadway                                      | 2.844                     | 917 <sup>1</sup>     | 1,113 <sup>1</sup>  | 1,327 <sup>1</sup>  | 1,185 <sup>1</sup>  | 2,004 <sup>1</sup>    |

\*Not calculated for this Flood Risk Project

<sup>1</sup>Peak discharge is a result of HEC-RAS 1D unsteady-state model used to determine discharges for steady-state regulatory elevations. These discharge values represent the peak discharge in the specific model run conducted for this study. These discharges should not be used in isolation and should only be applied in consideration of the overall hydrologic and hydraulic behavior represented in the model.

|                                 |                                                                                       | Drainage                  | Peak Discharge (cfs) |                     |                     |                     |                       |  |
|---------------------------------|---------------------------------------------------------------------------------------|---------------------------|----------------------|---------------------|---------------------|---------------------|-----------------------|--|
| Flooding Source                 | Location                                                                              | Area<br>(Square<br>Miles) | 10% Annual<br>Chance | 4% Annual<br>Chance | 2% Annual<br>Chance | 1% Annual<br>Chance | 0.2% Annual<br>Chance |  |
| Lindenthal Creek                | Immediately downstream of<br>Main Street                                              | 2.414                     | 788 <sup>1</sup>     | 905 <sup>1</sup>    | 1,028 <sup>1</sup>  | 996 <sup>1</sup>    | 1,383 <sup>1</sup>    |  |
| Lindenthal Creek                | Immediately upstream of<br>Sycamore Street                                            | 2.364                     | 782 <sup>1</sup>     | 889 <sup>1</sup>    | 991 <sup>1</sup>    | 1,101 <sup>1</sup>  | 1,306 <sup>1</sup>    |  |
| Lindenthal Creek                | Approximately 110 feet<br>downstream of confluence of<br>Lindenthal Creek Tributary 1 | 2.069                     | 667 <sup>1</sup>     | 745 <sup>1</sup>    | 794 <sup>1</sup>    | 834 <sup>1</sup>    | 909 <sup>1</sup>      |  |
| Lindenthal Creek                | Approximately 100 feet<br>upstream of Pine Street                                     | 0.958                     | 661 <sup>1</sup>     | 423 <sup>1</sup>    | 400 <sup>1</sup>    | 351 <sup>1</sup>    | 212 <sup>1</sup>      |  |
| Lindenthal Creek                | Immediately downstream of<br>Walnut Street                                            | 0.87                      | 592 <sup>1</sup>     | 740 <sup>1</sup>    | 628 <sup>1</sup>    | 498 <sup>1</sup>    | 184 <sup>1</sup>      |  |
| Lindenthal Creek                | Approximately 940 feet<br>upstream of US Highway 40                                   | 0.821                     | 5641                 | 751 <sup>1</sup>    | 855 <sup>1</sup>    | 1,202 <sup>1</sup>  | 1,778 <sup>1</sup>    |  |
| Lindenthal Creek<br>Tributary 1 | Immediately upstream of US<br>Highway 40                                              | 1.049                     | 355 <sup>1</sup>     | 392 <sup>1</sup>    | 481 <sup>1</sup>    | 484 <sup>1</sup>    | 777 <sup>1</sup>      |  |
| Lindenthal Creek<br>Tributary 1 | Approximately 1,000 feet<br>downstream of Troxler<br>Avenue                           | 0.52                      | 365 <sup>1</sup>     | 562 <sup>1</sup>    | 252 <sup>1</sup>    | 248 <sup>1</sup>    | 757 <sup>1</sup>      |  |
| Lindenthal Creek<br>Tributary 1 | Approximately 850 feet<br>downstream of Troxler<br>Avenue                             | 0.516                     | 365 <sup>1</sup>     | 563 <sup>1</sup>    | 788 <sup>1</sup>    | 598 <sup>1</sup>    | 773 <sup>1</sup>      |  |
| Lindenthal Creek<br>Tributary 1 | Approximately 1,400 feet<br>upstream of Troxler Avenue                                | 0.22                      | 400 <sup>1</sup>     | 584 <sup>1</sup>    | 745 <sup>1</sup>    | 957 <sup>1</sup>    | 1,271 <sup>1</sup>    |  |
| Lindenthal Creek<br>Tributary 2 | Immediately upstream of<br>confluence with Lindenthal<br>Creek                        | 0.268                     | 197                  | 233                 | 269                 | 303                 | 379                   |  |

\*Not calculated for this Flood Risk Project

<sup>&</sup>lt;sup>1</sup>Peak discharge is a result of HEC-RAS 1D unsteady-state model used to determine discharges for steady-state regulatory elevations. These discharge values represent the peak discharge in the specific model run conducted for this study. These discharges should not be used in isolation and should only be applied in consideration of the overall hydrologic and hydraulic behavior represented in the model.

|                                 |                                                                                         | Drainage                  | e Peak Discharge (cfs) |                     |                     |                     |                       |  |
|---------------------------------|-----------------------------------------------------------------------------------------|---------------------------|------------------------|---------------------|---------------------|---------------------|-----------------------|--|
| Flooding Source                 | Location                                                                                | Area<br>(Square<br>Miles) | 10% Annual<br>Chance   | 4% Annual<br>Chance | 2% Annual<br>Chance | 1% Annual<br>Chance | 0.2% Annual<br>Chance |  |
| Lindenthal Creek<br>Tributary 2 | Immediately downstream of<br>confluence of Lindenthal<br>Creek Tributary 3              | 0.238                     | 215                    | 306                 | 387                 | 479                 | 634                   |  |
| Lindenthal Creek<br>Tributary 2 | Immediately downstream of<br>State Route 160                                            | 0.238                     | 176                    | 208                 | 242                 | 271                 | 347                   |  |
| Lindenthal Creek<br>Tributary 2 | Immediately upstream of<br>confluence of Lindenthal<br>Creek Tributary 3                | 0.073                     | 57                     | 81                  | 102                 | 127                 | 170                   |  |
| Lindenthal Creek<br>Tributary 2 | Immediately upstream of US<br>Highway 40 East                                           | 0.013                     | 15                     | 21                  | 26                  | 32                  | 42                    |  |
| Lindenthal Creek<br>Tributary 2 | Immediately downstream of<br>US Highway 40 East                                         | 0.013                     | 8                      | 9                   | 10                  | 10                  | 12                    |  |
| Lindenthal Creek<br>Tributary 3 | Immediately upstream of<br>confluence with Lindenthal<br>Creek Tributary 2              | 0.165                     | 158                    | 227                 | 287                 | 355                 | 468                   |  |
| Lindenthal Creek<br>Tributary 4 | Approximately 960 feet<br>upstream of confluence with<br>Lindenthal Creek Tributary 1   | 0.027                     | 26¹                    | 35 <sup>1</sup>     | 43 <sup>1</sup>     | 19 <sup>1</sup>     | 32 <sup>1</sup>       |  |
| Lindenthal Creek<br>Tributary 4 | Approximately 1,820 feet<br>upstream of confluence with<br>Lindenthal Creek Tributary 1 | 0.007                     | 26¹                    | 35 <sup>1</sup>     | 43 <sup>1</sup>     | 52 <sup>1</sup>     | 67 <sup>1</sup>       |  |
| Mississippi River               | River Mile 179.6 St. Louis<br>Gage                                                      | 697,000                   | 670,000                | *                   | 850,000             | 910,000             | 1,120,000             |  |
| Mississippi River               | Crossover with Missouri<br>River                                                        | 171,500                   | 360,000                | *                   | 486,000             | 610,000             | 720,000               |  |
| Mississippi River               | River Mile 218.0 Grafton<br>Gage                                                        | 171,300                   | 360,000                | *                   | 446,000             | 488,000             | 585,000               |  |

\*Not calculated for this Flood Risk Project

<sup>&</sup>lt;sup>1</sup>Peak discharge is a result of HEC-RAS 1D unsteady-state model used to determine discharges for steady-state regulatory elevations. These discharge values represent the peak discharge in the specific model run conducted for this study. These discharges should not be used in isolation and should only be applied in consideration of the overall hydrologic and hydraulic behavior represented in the model.

|                             |                                                                            | Drainage                  | Peak Discharge (cfs) |                     |                     |                     |                       |  |  |
|-----------------------------|----------------------------------------------------------------------------|---------------------------|----------------------|---------------------|---------------------|---------------------|-----------------------|--|--|
| Flooding Source             | Location                                                                   | Area<br>(Square<br>Miles) | 10% Annual<br>Chance | 4% Annual<br>Chance | 2% Annual<br>Chance | 1% Annual<br>Chance | 0.2% Annual<br>Chance |  |  |
| Mooney Creek                | At N State Route 157                                                       | 12.3                      | 3,700                | *                   | 5,600               | 6,200               | 7,300                 |  |  |
| Mooney Creek                | At Marine Road                                                             | 5.05                      | 1,053                | *                   | 1,822               | 2,244               | 3,605                 |  |  |
| Mooney Creek                | Immediately upstream of<br>confluence of Mooney Creek<br>Tributary 1       | 2.06                      | 434                  | *                   | 751                 | 925                 | 1,487                 |  |  |
| Mooney Creek                | Immediately upstream of<br>confluence of Mooney Creek<br>Tributary 2       | 1.79                      | 366                  | *                   | 641                 | 793                 | 1,280                 |  |  |
| Mooney Creek<br>Tributary 1 | At mouth                                                                   | 0.67                      | 157                  | *                   | 261                 | 318                 | 501                   |  |  |
| Mooney Creek<br>Tributary 2 | At mouth                                                                   | 0.26                      | 60                   | *                   | 101                 | 123                 | 195                   |  |  |
| Paddock Creek               | At mouth                                                                   | 25.6                      | 3,600                | *                   | 5,400               | 6,800               | 8,500                 |  |  |
| Paddock Creek               | Immediately upstream of<br>Yorkville Road                                  | 14.3                      | 3,300                | *                   | 5,000               | 5,900               | 7,300                 |  |  |
| Sherry Creek                | At mouth                                                                   | 28.1                      | 5,600                | *                   | 8,900               | 11,200              | 13,700                |  |  |
| Silver Creek                | At St. Clair County Line                                                   | 284                       | 16,900               | *                   | 28,900              | 33,700              | 43,500                |  |  |
| Silver Creek                | Downstream of confluence of<br>East Fork Silver Creek                      | 256.9                     | 17,000               | *                   | 28,900              | 33,700              | 43,400                |  |  |
| Silver Creek                | Immediately downstream of<br>confluence of Silver Creek<br>Tributary No. 1 | 79.9                      | 13,100               | *                   | 20,600              | 23,700              | 30,000                |  |  |
| Silver Creek                | Immediately downstream of<br>confluence of Silver Creek<br>Tributary No. 2 | 58.2                      | 12,200               | *                   | 17,300              | 19,400              | 24,100                |  |  |

\*Not calculated for this Flood Risk Project

<sup>1</sup>Peak discharge is a result of HEC-RAS 1D unsteady-state model used to determine discharges for steady-state regulatory elevations. These discharge values represent the peak discharge in the specific model run conducted for this study. These discharges should not be used in isolation and should only be applied in consideration of the overall hydrologic and hydraulic behavior represented in the model.

|                                 |                                                                | Drainage                  |                      |                     |                     |                     |                       |  |  |
|---------------------------------|----------------------------------------------------------------|---------------------------|----------------------|---------------------|---------------------|---------------------|-----------------------|--|--|
| Flooding Source                 | Location                                                       | Area<br>(Square<br>Miles) | 10% Annual<br>Chance | 4% Annual<br>Chance | 2% Annual<br>Chance | 1% Annual<br>Chance | 0.2% Annual<br>Chance |  |  |
| Silver Creek<br>Tributary No. 1 | At mouth                                                       | 9.9                       | 2,860                | *                   | 4,170               | 4,800               | 5,900                 |  |  |
| Silver Creek<br>Tributary No. 2 | At mouth                                                       | 11.7                      | 2,930                | *                   | 4,290               | 4,950               | 6,120                 |  |  |
| Smith Lake<br>Tributary         | Immediately upstream of E<br>Edwardsville Road                 | 2.42                      | 82                   | *                   | 130                 | 165                 | 871                   |  |  |
| Smith Lake<br>Tributary         | Approximately 2,265 feet<br>upstream of E Edwardsville<br>Road | 2.05                      | 234                  | *                   | 391                 | 506                 | 847                   |  |  |
| Smith Lake<br>Tributary         | Downstream of confluence of<br>Smith Lake Tributary No. 2      | 1.72                      | 90                   | *                   | 147                 | 188                 | 739                   |  |  |
| Smith Lake<br>Tributary         | At Bonita Street                                               | 0.35                      | 56                   | *                   | 97                  | 128                 | 159                   |  |  |
| Smith Lake<br>Tributary No. 2   | At confluence with Smith<br>Lake Tributary                     | 1.28                      | 29 <sup>2</sup>      | *                   | 29 <sup>2</sup>     | 83 <sup>2</sup>     | 132 <sup>2</sup>      |  |  |
| Stanley Creek                   | At mouth                                                       | 1.7                       | 1,300                | *                   | 1,900               | 2,300               | 2,700                 |  |  |
| Sugar Fork                      | At mouth                                                       | 30.2                      | 4,500                | *                   | 6,700               | 7,600               | 9,050                 |  |  |
| Tributary E                     | Approximately 2,950 feet downstream of Valley Drive            | 0.9                       | 1,020                | *                   | 1,540               | 1,880               | 2,240                 |  |  |
| Tributary E                     | At Oakwood Avenue                                              | 0.5                       | 780                  | *                   | 1,120               | 1,290               | 1,450                 |  |  |
| Tributary F                     | Immediately downstream of<br>confluence of Tributary G         | 0.5                       | 1,070                | *                   | 1,460               | 1,640               | 1,820                 |  |  |
| Tributary F                     | Immediately upstream of<br>confluence with Tributary G         | 0.3                       | 650                  | *                   | 850                 | 940                 | 1,030                 |  |  |
| Tributary G                     | At mouth                                                       | 0.2                       | 470                  | *                   | 650                 | 740                 | 810                   |  |  |
| Tributary X                     | At mouth                                                       | 7.7                       | 3,400                | *                   | 5,000               | 5,900               | 7,200                 |  |  |

\*Not calculated for this Flood Risk Project

<sup>1</sup>Peak discharge is a result of HEC-RAS 1D unsteady-state model used to determine discharges for steady-state regulatory elevations. These discharge values represent the peak discharge in the specific model run conducted for this study. These discharges should not be used in isolation and should only be applied in consideration of the overall hydrologic and hydraulic behavior represented in the model.

#### Peak Discharge (cfs) Drainage Area 10% Annual 4% Annual 2% Annual 1% Annual 0.2% Annual (Square Flooding Source Location Miles) Chance Chance Chance Chance Chance \* Tributary Z At mouth 2.4 1.200 1.800 2,100 2,600 West Fork Wood Immediately below 51.7 4,362 6,044 7,617 9,427 13,883 River confluence with Black Creek West Fork Wood Approximately 985 feet 44.1 4,021 5,669 7,119 8,714 12,992 River above Harris Lane Approximately 300 feet West Fork Wood below confluence with Lick 37.8 3,700 5,139 6.325 7,657 12,331 River Branch Immediately downstream of West Fork Wood confluence of Honeycut \* 36.8 7,900 12,500 15,300 19,900 River Branch Immediately downstream of West Fork Wood \* 17.4 5,900 8,900 10,700 13,400 confluence of Tributary X River 123.0 15.395 32,750 Wood River At mouth 11,351 18,845 22,661 Immediately below confluence of East Fork Wood River 119.6 11,207 15,150 18,542 22,381 32,371 Wood River and West Fork

# Table 9 : Summary of Discharges (continued)

\*Not calculated for this Flood Risk Project

Wood River

<sup>1</sup>Peak discharge is a result of HEC-RAS 1D unsteady-state model used to determine discharges for steady-state regulatory elevations. These discharge values represent the peak discharge in the specific model run conducted for this study. These discharges should not be used in isolation and should only be applied in consideration of the overall hydrologic and hydraulic behavior represented in the model.

<sup>2</sup>Discharge contained within storm sewer

# Figure 7: Frequency Discharge-Drainage Area Curves

# [Not Applicable to this Flood Risk Project]

|                                                           |                                                                                                    |                         | Elevat                 | ions (feet NA          | VD88)                  |                          |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------|------------------------|------------------------|------------------------|--------------------------|
| Flooding Source                                           | Location                                                                                           | 10%<br>Annual<br>Chance | 4%<br>Annual<br>Chance | 2%<br>Annual<br>Chance | 1%<br>Annual<br>Chance | 0.2%<br>Annual<br>Chance |
| Cahokia Diversion<br>Channel Drainage 1 <sup>3</sup>      | Approximately 2,625 feet east of Lewis and Clark<br>Boulevard along Canal Road                     | *                       | *                      | *                      | 426.9                  | *                        |
| Cahokia Diversion<br>Channel Drainage 2 <sup>3</sup>      | Approximately 4,280 feet east of Lewis and Clark<br>Boulevard along Canal Road                     | *                       | *                      | *                      | 425.4                  | *                        |
| Cahokia Diversion<br>Channel Drainage 3 <sup>3</sup>      | Approximately 2,095 feet west of State Route 111 along Canal Road                                  | *                       | *                      | *                      | 425.6                  | *                        |
| Cahokia Diversion<br>Channel Drainage 5 <sup>3</sup>      | Approximately 100 feet south of the intersection of Wagon Wheel Road and Missouri Pacific Railroad | *                       | *                      | *                      | 424.7                  | *                        |
| Cahokia Diversion<br>Channel Drainage 5 <sup>3</sup>      | Approximately 3,350 feet east of State Route 111 along Canal Road                                  | *                       | *                      | *                      | 420.9                  | *                        |
| Ditch at Granite City<br>WWTP <sup>1</sup>                | Granite City Wastewater Treatment Plant gravity drain along E Street                               | *                       | *                      | *                      | 416.0                  | *                        |
| Ditch at Granite City<br>WWTP <sup>1</sup>                | Granite City Wastewater Treatment Plant Pump<br>Station No.1                                       | *                       | *                      | *                      | 413.4                  | *                        |
| Drainage 1 to Indian<br>Creek <sup>3</sup>                | Approximately 825 feet south-southwest of Old Alton<br>Edwardsville Road Bridge at Indian Creek    | *                       | *                      | *                      | 440.5                  | *                        |
| Drainage 2 to Indian<br>Creek <sup>3</sup>                | Approximately 500 feet west-northwest of Old Alton<br>Edwardsville Road Bridge at Indian Creek     | *                       | *                      | *                      | 437.1                  | *                        |
| Drainage Path 1 to<br>Venice Pump<br>Station <sup>1</sup> | Venice Pump Station gravity drain at Bremen Street                                                 | *                       | *                      | *                      | 406.9                  | *                        |
| East Fork Silver<br>Creek                                 | Highland Silver Lake                                                                               | *                       | *                      | *                      | 505.3                  | *                        |
| East Fork Wood<br>River Drainage 2 <sup>3</sup>           | Approximately 1,150 feet west-northwest of Powder<br>Mill Road Bridge at East Fork Wood River      | *                       | *                      | *                      | 427.9                  | *                        |

# Table 10: Summary of Non-Coastal Stillwater Elevations

\*Not calculated for this Flood Risk Project

<sup>1</sup> Interior Drainage – MESD/Chain of Rocks East Levee System

<sup>2</sup> Interior Drainage - Wood River D&LD East and West System

<sup>3</sup> Interior Drainage - Wood River D&LD Lower System

<sup>4</sup> Interior Drainage - Wood River D&LD Upper System

|                                                 |                                                                                                  |                         | Elevat                 | tions (feet NA         | VD88)                  |                          |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------|------------------------|------------------------|------------------------|--------------------------|
| Flooding Source                                 | Location                                                                                         | 10%<br>Annual<br>Chance | 4%<br>Annual<br>Chance | 2%<br>Annual<br>Chance | 1%<br>Annual<br>Chance | 0.2%<br>Annual<br>Chance |
| East Fork Wood<br>River Drainage 4 <sup>2</sup> | Approximately 1,000 feet northeast of Wood River and East Fork Wood River confluence             | *                       | *                      | *                      | 428.2                  | *                        |
| East Fork Wood<br>River Drainage 5 <sup>2</sup> | Approximately 2,000 feet northeast of Powder Mill<br>Road across East Fork Wood River            | *                       | *                      | *                      | 438.3                  | *                        |
| East Fork Wood<br>River Drainage 6 <sup>2</sup> | Approximately 4,350 feet east-northeast of Powder<br>Mill Road across East Fork Wood River       | *                       | *                      | *                      | 431.9                  | *                        |
| East Fork Wood<br>River Drainage 7 <sup>2</sup> | Approximately 3,150 feet southeast of Powder Mill<br>Road and College Avenue intersection        | *                       | *                      | *                      | 439.9                  | *                        |
| Granite City Pump<br>Station <sup>1</sup>       | Granite City Regional Wastewater Facility                                                        | *                       | *                      | *                      | 411.6                  | *                        |
| Horseshoe Lake <sup>1</sup>                     | Outfall of Horseshoe Lake at Alton & Southern<br>Railroad and State Route 111                    | *                       | *                      | *                      | 406.5                  | *                        |
| Joulters Creek                                  | Holiday Lake                                                                                     | *                       | *                      | *                      | 507.9                  | *                        |
| Levee Road<br>Drainage 1 <sup>3</sup>           | Approximately 500 feet south of Lewis and Clark<br>Confluence Tower along Levee Road             | *                       | *                      | *                      | 428.9                  | *                        |
| Levee Road<br>Drainage 6 <sup>3</sup>           | Wood River Pump Station at intersection of Lewis and<br>Clark Boulevard and Amoco Cutoff         | *                       | *                      | *                      | 425.0                  | *                        |
| Levee Road<br>Drainage 7 <sup>3</sup>           | Southwest corner of Lewis and Clark Boulevard and River Heritage Parkway interchange             | *                       | *                      | *                      | 427.8                  | *                        |
| Long Lake                                       | Centered near the intersection of Pontoon Road and Lake Drive within Village of Pontoon Beach    | 415.4                   | *                      | 415.9                  | 416.4                  | 416.6                    |
| Shields Branch <sup>4</sup>                     | East and northwest of Cpl Belchik Memorial<br>Expressway and River Heritage Parkway intersection | *                       | *                      | *                      | 415.0                  | *                        |
| Wood River Drainage 3 <sup>3</sup>              | Approximately 590 feet west of the intersection of<br>Center Street and Niagara Street           | *                       | *                      | *                      | 430.0                  | *                        |
| Wood River Drainage<br>8 <sup>2</sup>           | Approximately 2,415 feet west of Powder Mill Road<br>Bridge at East Fork Wood River              | *                       | *                      | *                      | 436.2                  | *                        |

# Table 10 : Summary of Non-Coastal Stillwater Elevations (continued)

\*Not calculated for this Flood Risk Project <sup>1</sup> Interior Drainage - MESD/Chain of Rocks East Levee System

<sup>2</sup> Interior Drainage - Wood River D&LD East and West Levee System
 <sup>3</sup> Interior Drainage - Wood River D&LD Lower System

<sup>4</sup> Interior Drainage - Wood River D&LD Upper System

|                   |                    | Agency                    |                                            | Drainage                  | Period o  | f Record  |
|-------------------|--------------------|---------------------------|--------------------------------------------|---------------------------|-----------|-----------|
| Flooding Source   | Gage<br>Identifier | that<br>Maintains<br>Gage | Site Name                                  | Area<br>(Square<br>Miles) | From      | То        |
| Cahokia Creek     | 05587900           | USGS                      | Cahokia<br>Creek at<br>Edwardsville,<br>IL | 212                       | 9/17/1969 | 5/1/2017  |
| Canteen Creek     | 05589500           | USGS                      | Canteen<br>Creek at<br>Caseyville, IL      | 22.6                      | 1939      | 1975      |
| Indian Creek      | 05588000           | USGS                      | Indian Creek<br>at Wanda, IL               | 36.7                      | 4/19/1941 | 4/30/2017 |
| Mississippi River | 07010000           | USGS                      | Mississippi<br>River at St.<br>Louis, MO   | 697,000                   | 1898      | 1998      |

 Table 11: Stream Gage Information used to Determine Discharges

# 5.2 Hydraulic Analyses

Analyses of the hydraulic characteristics of flooding from the sources studied were carried out to provide estimates of the elevations of floods of the selected recurrence intervals. Base flood elevations on the FIRM represent the elevations shown on the Flood Profiles and in the Floodway Data tables in the FIS Report. Rounded whole-foot elevations may be shown on the FIRM in coastal areas, areas of ponding, and other areas with static base flood elevations. These whole-foot elevations may not exactly reflect the elevations derived from the hydraulic analyses. Flood elevations shown on the FIRM are primarily intended for flood insurance rating purposes. For construction and/or floodplain management purposes, users are cautioned to use the flood elevation data presented in this FIS Report in conjunction with the data shown on the FIRM. The hydraulic analyses for this FIS were based on unobstructed flow. The flood elevations shown on the profiles are thus considered valid only if hydraulic structures remain unobstructed, operate properly, and do not fail.

For streams for which hydraulic analyses were based on cross sections, locations of selected cross sections are shown on the Flood Profiles (Exhibit 1). For stream segments for which a floodway was computed (Section 6.3), selected cross sections are also listed in Table 23, "Floodway Data."

A summary of the methods used in hydraulic analyses performed for this project is provided in Table 12. Roughness coefficients are provided in Table 13. Roughness coefficients are values representing the frictional resistance water experiences when passing overland or through a channel. They are used in the calculations to determine water surface elevations. Greater detail (including assumptions, analysis, and results) is available in the archived project documentation.

| Flooding Source | Study Limits<br>Downstream Limit                                                                         | Study Limits<br>Upstream Limit                                                                           | Hydrologic<br>Model or<br>Method Used | Hydraulic<br>Model or<br>Method Used | Date<br>Analyses<br>Completed | Flood<br>Zone on<br>FIRM | Special Considerations                                                                                                                                                                                                      |
|-----------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|-------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Belt Line Creek | Approximately 280<br>feet downstream of<br>Burling Drive                                                 | Immediately<br>downstream of<br>Homer M. Adams<br>Parkway                                                | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1972)                | July 1978                     | AE w/<br>Floodway        | Starting water-surface elevations<br>determined by normal depth calculations.<br>Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                                                                       |
| Black Creek     | Confluence with<br>West Fork Wood<br>River                                                               | Immediately<br>downstream of<br>North Rodgers<br>Avenue                                                  | N/A                                   | N/A                                  | N/A                           | A                        | Previously called Coal Branch Creek.<br>Delineated to tie-in between West Fork<br>Wood River and Black Creek Zone AE.                                                                                                       |
| Black Creek     | Immediately<br>downstream of<br>North Rodgers<br>Avenue                                                  | Confluence of Coal<br>Branch                                                                             | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1972)                | July 1978                     | AE w/<br>Floodway        | Previously called Coal Branch Creek.<br>Starting water-surface elevations<br>determined by normal depth calculations.<br>Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                               |
| Cahokia Creek   | Confluence with<br>Mississippi River                                                                     | Approximately 3.14<br>miles upstream of<br>State Route 140                                               | HEC-SSP 2.1.1<br>(USACE<br>2017b)     | HEC-RAS 4.1<br>(USACE<br>2010b)      | 11/17/2019                    | AE w/<br>Floodway        | Floodway width reported is the width of<br>shaded floodway region on the FIRM.<br>Variation from modeled floodway width is<br>due to extension of floodway to landward<br>toe of levee or at confluence locations.          |
| Cahokia Creek   | Approximately 3.14<br>miles upstream of<br>State Route 140                                               | Approximately 500<br>feet downstream of<br>confluence of<br>Cahokia Creek<br>Tributary 8 (at XS<br>'AB') | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b><br>FIS. Stream stationing from 10/15/1981 FIS<br>increased by 1,064 feet to obtain<br>continuous stationing.                                                                   |
| Cahokia Creek   | Approximately 500<br>feet downstream of<br>confluence of<br>Cahokia Creek<br>Tributary 8 (at XS<br>'AB') | Madison/St. Clair<br>County Boundary                                                                     | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Flood hazards were digitized from<br>04/15/1982 FIRMs for Madison County,<br>Unincorporated Areas. Stream stationing<br>from 10/15/1981 FIS increased by 1,064<br>feet to obtain continuous stationing.                     |
| Canteen Creek   | At Collinsville Road                                                                                     | Madison/St. Clair<br>County Boundary                                                                     | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1972)                | June 1979                     | AE w/<br>Floodway        | The HEC-1 model frequency curve was<br>adjusted to closely match a frequency curve<br>derived from a log-Pearson Type III<br>statistical gage analysis. (FEMA 1981)<br>Redelineated in 2017 by STARR for <b>TBD</b><br>FIS. |

# Table 12: Summary of Hydrologic and Hydraulic Analyses

| Flooding Source           | Study Limits<br>Downstream Limit                                          | Study Limits<br>Upstream Limit                                            | Hydrologic<br>Model or<br>Method Used                                   | Hydraulic<br>Model or<br>Method Used | Date<br>Analyses<br>Completed | Flood<br>Zone on<br>FIRM | Special Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------|-------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Canteen Creek             | St. Clair/Madison<br>County Boundary                                      | Approximately<br>3,100 feet<br>upstream of<br>Interstate 55               | HEC-1<br>(USACE 1973)                                                   | HEC-2<br>(USACE 1972)                | June 1979                     | AE w/<br>Floodway        | The HEC-1 model frequency curve was<br>adjusted to closely match a frequency curve<br>derived from a log-Pearson Type III<br>statistical gage analysis. (FEMA 1981b)<br>Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                                                                                                                                                                                                                                                                      |
| Dentons Branch            | Approximately 0.5<br>miles upstream of<br>confluence with<br>Sherry Creek | Approximately 1.4<br>miles upstream of<br>confluence with<br>Sherry Creek | N/A                                                                     | N/A                                  | June 1979                     | A                        | Flood hazards were digitized from<br>04/15/1982 FIRMs for Madison County,<br>Unincorporated Areas. For the 1981<br>Madison County, Unincorporated Areas FIS<br>four sources of information were used to<br>delineate Zone A flood hazards. These<br>were the Flood Hazard Boundary Map,<br>USGS Flood Prone Area Maps,<br>Southwester Illinois Metropolitan Regional<br>Planning Commission 100-Year Flood Plain<br>Maps and the USGS Publication "Depth<br>and Frequency of Floods in Illinois". (FEMA<br>1981b) |
| East Alton Ditch          | At Wood River<br>D&LD Lower<br>System                                     | Approximately 100<br>feet upstream of<br>Douglas Street                   | Synthetic Unit<br>Hydrographs<br>for Small<br>Watersheds<br>(ASCE 1961) | HEC-2<br>(USACE 1973)                | October<br>1977               | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| East Fork Sherry<br>Creek | Mouth at Sherry<br>Creek                                                  | Immediately<br>upstream of<br>Renken Road                                 | HEC-1<br>(USACE 1973)                                                   | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Flood hazards were digitized from<br>04/15/1982 FIRMs for Madison County,<br>Unincorporated Areas. Included on Sherry<br>Creek flood profile.                                                                                                                                                                                                                                                                                                                                                                     |
| East Fork Silver<br>Creek | Confluence with<br>Silver Creek                                           | State Route 143                                                           | HEC-1<br>(USACE 1973)                                                   | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b> FIS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| East Fork Silver<br>Creek | State Route 143                                                           | Approximately<br>1,400 feet<br>downstream of<br>State Route 160           | HEC-1<br>(USACE 1973)                                                   | HEC-2<br>(USACE 1977)                | June 1979                     | AE                       | Area known as Highland Silver Lake.<br>Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| East Fork Silver<br>Creek | Approximately<br>1,400 feet<br>downstream of<br>State Route 160           | Approximately 300<br>feet upstream of<br>Ludwig Road                      | HEC-1<br>(USACE 1973)                                                   | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Flooding Source                                                         | Study Limits<br>Downstream Limit                                | Study Limits<br>Upstream Limit                                  | Hydrologic<br>Model or<br>Method Used     | Hydraulic<br>Model or<br>Method Used            | Date<br>Analyses<br>Completed | Flood<br>Zone on<br>FIRM | Special Considerations                                                                                                                                                                                                             |
|-------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|-------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| East Fork Wood<br>River                                                 | Confluence with<br>Wood River and<br>West Fork Wood<br>River    | Approximately<br>1,270 feet<br>upstream of State<br>Route 111   | HEC-HMS<br>(USACE<br>2017a)               | HEC-RAS 4.1<br>(USACE<br>2010b)                 | 11/17/2019                    | AE w/<br>Floodway        | Floodway width reported is the width of<br>shaded floodway region on the FIRM.<br>Variation from modeled floodway width is<br>due to extension of floodway to landward<br>toe of levee or combined floodway                        |
| East Fork Wood<br>River                                                 | Approximately<br>1,270 feet<br>upstream of State<br>Route 111   | Approximately<br>2,000 feet<br>upstream of Seiler<br>Road       | HEC-1<br>(USACE 1973)                     | HEC-2<br>(USACE 1977)                           | June 1979                     | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b><br>FIS. Stream stationing from 10/15/1981 FIS<br>increased by 568 feet to obtain continuous<br>stationing.                                                                            |
| Honeycut Branch                                                         | Confluence with<br>West Fork Wood<br>River                      | Approximately<br>10,600 feet<br>upstream of Seiler<br>Road      | HEC-1<br>(USACE 1973)                     | HEC-2<br>(USACE 1977)                           | June 1979                     | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                                                                                                                                                               |
| Indian Creek                                                            | Confluence with<br>Cahokia Creek                                | Approximately<br>1,200 feet<br>upstream of<br>Edwardsville Road | HEC-SSP2.1.1<br>(USACE<br>2017b)          | HEC-RAS 4.1<br>(USACE<br>2010b)                 | 11/17/2019                    | AE w/<br>Floodway        | Floodway width reported is the width of<br>shaded floodway region on the FIRM.<br>Variation from modeled floodway width is<br>due to extension of floodway to landward<br>toe of levee or combined floodway with<br>Cahokia Creek. |
| Indian Creek                                                            | Approximately<br>1,200 feet<br>upstream of<br>Edwardsville Road | Approximately 120<br>feet upstream of<br>Moro Road              | HEC-1<br>(USACE 1973)                     | HEC-2<br>(USACE 1977)                           | June 1979                     | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b><br>FIS. Stream stationing from 10/15/1981 FIS<br>decreased by 51 feet to obtain continuous<br>stationing.                                                                             |
| Interior Drainage<br>- Metro East<br>Sanitary District<br>Levee Systems | N/A                                                             | N/A                                                             | SWMM 5<br>Version 5.0.018<br>(USEPA 2009) | SWMM 5<br>Version<br>5.0.018<br>(USEPA<br>2009) | 06/29/2018                    | A, AE, AH                | See Section 5.1, Table 10 for interior ponding elevations.                                                                                                                                                                         |
| Interior Drainage<br>- Wood River<br>Levee System                       | N/A                                                             | N/A                                                             | SWMM 5<br>Version 5.0.018                 | SWMM 5<br>Version<br>5.0.018                    | 06/29/2018                    | AE, AH                   | See Section 5.1, Table 10 for interior ponding elevations.                                                                                                                                                                         |
| Interior Drainage<br>- Wood River<br>Upper Levee<br>System              | N/A                                                             | N/A                                                             | SWMM 5<br>Version 5.0.018                 | SWMM 5<br>Version<br>5.0.018                    | 03/10/2017                    | AE                       | See Section 5.1, Table 10 for interior ponding elevations.                                                                                                                                                                         |
| Joulters Creek                                                          | Confluence with<br>Paddock Creek                                | Holiday Dam Road                                                | HEC-1<br>(USACE 1973)                     | HEC-2<br>(USACE 1977)                           | June 1979                     | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                                                                                                                                                               |

| Flooding Source              | Study Limits<br>Downstream Limit                                  | Study Limits<br>Upstream Limit                                                          | Hydrologic<br>Model or<br>Method Used | Hydraulic<br>Model or<br>Method Used | Date<br>Analyses<br>Completed | Flood<br>Zone on<br>FIRM | Special Considerations                                                                                             |
|------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|-------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------|
| Joulters Creek               | Holiday Dam Road                                                  | Waikiki Drive                                                                           | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1977)                | June 1979                     | AE                       | Area known as Holiday Lake. Redelineated in 2017 by STARR for TBD FIS.                                             |
| Joulters Creek               | Waikiki Drive                                                     | Approximately 450<br>feet upstream of<br>Renken Road                                    | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                                               |
| Judys Branch                 | Approximately<br>1,100 feet<br>downstream of<br>State Highway 157 | Approximately<br>4,100 feet<br>upstream of State<br>Route 159                           | HEC-HMS<br>2.2.2<br>(USACE<br>2003b)  | HEC-RAS 3.1<br>(USACE<br>2003c)      | November<br>2005              | AE                       |                                                                                                                    |
| Judys Branch<br>Tributary 5  | Confluence with<br>Judys Branch                                   | Confluence with<br>Judys Branch<br>Tributary 5a and<br>5b                               | HEC-HMS<br>2.2.2                      | HEC-RAS 3.1                          | November<br>2005              | AE                       | Starting water-surface elevations were corresponding stage of receiving stream for each recurrence interval.       |
| Judys Branch<br>Tributary 5a | Confluence with<br>Judys Branch<br>Tributary 5                    | Approximately<br>1,000 feet<br>upstream of State<br>Route 159                           | HEC-HMS<br>2.2.2                      | HEC-RAS 3.1                          | November<br>2005              | AE                       | Starting water-surface elevations were corresponding stage of receiving stream for each recurrence interval.       |
| Judys Branch<br>Tributary 5b | Confluence with<br>Judys Branch<br>Tributary 5                    | Approximately<br>4,090 feet<br>upstream of State<br>Route 159                           | HEC-HMS<br>2.2.2                      | HEC-RAS 3.1                          | November<br>2005              | AE                       | Starting water-surface elevations were corresponding stage of receiving stream for each recurrence interval.       |
| Judys Branch<br>Tributary 9  | Confluence with<br>Judys Branch                                   | Approximately 610<br>feet upstream of<br>East Ingle Drive                               | HEC-HMS<br>2.2.2                      | HEC-RAS 3.1                          | November<br>2005              | AE                       | Starting water-surface elevations were<br>corresponding stage of receiving stream for<br>each recurrence interval. |
| Judys Branch<br>Tributary 9a | Confluence with<br>Judys Branch<br>Tributary 9                    | Approximately 160<br>feet upstream of<br>Ash Road                                       | HEC-HMS<br>2.2.2                      | HEC-RAS 3.1                          | November<br>2005              | AE                       | Starting water-surface elevations were<br>corresponding stage of receiving stream for<br>each recurrence interval. |
| Judys Branch<br>Tributary 9b | Confluence with<br>Judys Branch<br>Tributary 9                    | Approximately 445<br>feet upstream of<br>confluence with<br>Judys Branch<br>Tributary 9 | HEC-HMS<br>2.2.2                      | HEC-RAS 3.1                          | November<br>2005              | AE                       | Starting water-surface elevations were corresponding stage of receiving stream for each recurrence interval.       |
| Judys Branch<br>Tributary 10 | Confluence with<br>Judys Branch                                   | Approximately 450<br>feet upstream of<br>abandoned railroad                             | HEC-HMS<br>2.2.2                      | HEC-RAS 3.1                          | November<br>2005              | AE                       | Starting water-surface elevations were corresponding stage of receiving stream for each recurrence interval.       |

| Flooding Source                 | Study Limits<br>Downstream Limit                                            | Study Limits<br>Upstream Limit                                                                | Hydrologic<br>Model or<br>Method Used | Hydraulic<br>Model or<br>Method Used | Date<br>Analyses<br>Completed | Flood<br>Zone on<br>FIRM | Special Considerations                                                                                                                                                                                              |
|---------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|-------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Judys Creek                     | Confluence with<br>Judys Branch                                             | Approximately<br>1,350 feet<br>upstream of<br>Norfolk & Western<br>Railroad                   | HEC-HMS<br>2.2.2                      | HEC-RAS 3.1                          | November<br>2005              | AE                       | Starting water-surface elevations determined by normal depth calculations.                                                                                                                                          |
| Judys Creek<br>Tributary B      | Confluence with<br>Judys Creek                                              | Approximately<br>1,000 feet<br>upstream of<br>Timberwolfe Drive                               | HEC-HMS<br>2.2.2                      | HEC-RAS 3.1                          | November<br>2005              | AE                       | Starting water-surface elevations were corresponding stage of receiving stream for each recurrence interval.                                                                                                        |
| Laurel Branch                   | Confluence with<br>Lindenthal Creek                                         | Approximately<br>3,190 feet<br>upstream of<br>confluence with<br>Laurel Branch<br>Tributary 1 | HEC-HMS 3.5<br>(USACE<br>2010a)       | HEC-RAS<br>5.0.7<br>(USACE 2019)     | November<br>2021              | AE w/<br>Floodway        | HEC-RAS 1D unsteady-state model utilized<br>to develop discharges used for regulatory<br>elevations. Downstream boundary condition<br>modeled as a junction which uses receiving<br>stream water surface elevation. |
| Laurel Branch<br>Tributary 1    | Confluence with<br>Laurel Branch                                            | Approximately 945<br>feet upstream of<br>Willow Creek Drive                                   | HEC-HMS 3.5                           | HEC-RAS<br>5.0.7                     | November<br>2021              | AE w/<br>Floodway        | HEC-RAS 1D unsteady-state model utilized<br>to develop discharges used for regulatory<br>elevations. Downstream boundary condition<br>modeled as a junction which uses receiving<br>stream water surface elevation. |
| Lindenthal Creek                | Approximately<br>2,440 feet<br>upstream of<br>confluence with<br>Sugar Fork | Approximately 970<br>feet upstream of<br>US Highway 40                                        | HEC-HMS 3.5                           | HEC-RAS<br>5.0.7                     | November<br>2021              | AE w/<br>Floodway        | HEC-RAS 1D unsteady-state model utilized to develop discharges used for regulatory elevations.                                                                                                                      |
| Lindenthal Creek<br>Tributary 1 | Confluence with<br>Lindenthal Creek                                         | Approximately<br>1,400 feet<br>upstream of<br>Troxler Avenue                                  | HEC-HMS 3.5                           | HEC-RAS<br>5.0.7                     | November<br>2021              | AE w/<br>Floodway        | HEC-RAS 1D unsteady-state model utilized<br>to develop discharges used for regulatory<br>elevations. Downstream boundary condition<br>modeled as a junction which uses receiving<br>stream water surface elevation. |
| Lindenthal Creek<br>Tributary 2 | Confluence with<br>Lindenthal Creek<br>Tributary 1                          | Approximately 410<br>feet upstream of<br>US Highway 40                                        | HEC-HMS 3.5                           | HEC-RAS<br>5.0.7                     | November<br>2021              | AE w/<br>Floodway        | Peak discharges from HEC-HMS model are<br>utilized. Downstream boundary condition<br>modeled as a junction which uses receiving<br>stream water surface elevation.                                                  |

| Flooding Source                 | Study Limits<br>Downstream Limit                           | Study Limits<br>Upstream Limit                                                                   | Hydrologic<br>Model or<br>Method Used   | Hydraulic<br>Model or<br>Method Used | Date<br>Analyses<br>Completed | Flood<br>Zone on<br>FIRM | Special Considerations                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|-------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lindenthal Creek<br>Tributary 3 | Confluence with<br>Lindenthal Creek<br>Tributary 2         | Approximately<br>1,350 feet<br>upstream of<br>confluence with<br>Lindenthal Creek<br>Tributary 2 | HEC-HMS 3.5                             | HEC-RAS<br>5.0.7                     | November<br>2021              | AE w/<br>Floodway        | Peak discharges from HEC-HMS model are<br>utilized. Downstream boundary condition<br>modeled as a junction which uses receiving<br>stream water surface elevation.                                                                                                                                                                                                                                             |
| Lindenthal Creek<br>Tributary 4 | Confluence with<br>Lindenthal Creek<br>Tributary 1         | Approximately<br>1,820 feet<br>upstream of<br>confluence with<br>Lindenthal Creek<br>Tributary 1 | HEC-HMS 3.5                             | HEC-RAS<br>5.0.7                     | November<br>2021              | AE w/<br>Floodway        | HEC-RAS 1D unsteady-state model utilized<br>to develop discharges used for regulatory<br>elevations Downstream boundary condition<br>modeled as a junction which uses receiving<br>stream water surface elevation.                                                                                                                                                                                             |
| Mississippi River               | Madison/Jersey<br>County Boundary                          | Madison/St. Clair<br>County Boundary                                                             | Log-Pearson<br>Type III<br>(USWRC 1976) | UNET 4.0<br>(USACE 2001)             | 2004                          | AE w/<br>Floodway        | Redelineated for <b>TBD</b> FIS using 2014<br>LiDAR data. See Section 6.1 for<br>information on the vertical datum<br>conversion. See Section 8 for additional<br>information related to Mississippi River<br>floodway.                                                                                                                                                                                        |
| Mooney Creek                    | Confluence with<br>Cahokia Creek                           | Approximately 440<br>feet downstream of<br>Marine Road                                           | HEC-1<br>(USACE 1973)                   | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | June 1979 HEC-2 output only had output<br>data for the 1% event upstream of River<br>Station (RS) 4,171. A graphical tie-in was<br>made on the flood profile from RS 0 to RS<br>4,171 using the slope between the two most<br>downstream modeled cross-sections and<br>extending it downstream to RS 0,<br>corresponding to the elevation from<br>Cahokia Creek. Redelineated in 2017 by<br>STARR for TBD FIS. |
| Mooney Creek                    | Approximately 440<br>feet downstream of<br>Marine Road     | Immediately<br>upstream of dam                                                                   | HEC-HMS 3.5                             | HEC-RAS<br>3.0.1 (USACE<br>2001a)    | May 2003                      | AE w/<br>Floodway        |                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mooney Creek                    | Immediately<br>upstream of dam                             | Approximately 130<br>feet downstream of<br>East Lake Drive                                       | HEC-HMS 3.5                             | HEC-RAS<br>3.0.1                     | May 2003                      | AE                       | Area known as Dunlap Lake.                                                                                                                                                                                                                                                                                                                                                                                     |
| Mooney Creek                    | Approximately 130<br>feet downstream of<br>East Lake Drive | Immediately<br>downstream of<br>Goshen Road                                                      | HEC-HMS 3.5                             | HEC-RAS<br>3.0.1                     | May 2003                      | AE w/<br>Floodway        |                                                                                                                                                                                                                                                                                                                                                                                                                |

| Flooding Source                 | Study Limits<br>Downstream Limit                                                    | Study Limits<br>Upstream Limit                                  | Hydrologic<br>Model or<br>Method Used | Hydraulic<br>Model or<br>Method Used | Date<br>Analyses<br>Completed | Flood<br>Zone on<br>FIRM | Special Considerations                                                                                                                                                                   |
|---------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------|--------------------------------------|-------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mooney Creek<br>Tributary 1     | Confluence with<br>Mooney Creek                                                     | Approximately 800<br>feet upstream of<br>Stonebrooke Drive      | HEC-HMS 3.5                           | HEC-RAS<br>3.0.1                     | May 2003                      | AE w/<br>Floodway        | Starting water-surface elevations were corresponding stage of receiving stream for each recurrence interval.                                                                             |
| Mooney Creek<br>Tributary 2     | Confluence with<br>Mooney Creek                                                     | Approximately<br>1,900 feet<br>upstream of<br>Alderwood Court   | HEC-HMS 3.5                           | HEC-RAS<br>3.0.1                     | May 2003                      | AE w/<br>Floodway        | Starting water-surface elevations were corresponding stage of receiving stream for each recurrence interval.                                                                             |
| Paddock Creek                   | Mouth at Cahokia<br>Creek                                                           | Approximately<br>1,600 feet<br>upstream of<br>Stieglitz Road    | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                                                                                                                     |
| Sherry Creek                    | Confluence with<br>Cahokia Creek                                                    | Immediately<br>downstream of<br>Sherry Creek Road               | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                                                                                                                     |
| Sherry Creek                    | Immediately<br>downstream of<br>Sherry Creek Road                                   | Confluence of East<br>Fork Sherry Creek                         | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Flood hazards were digitized from<br>04/15/1982 FIRMs for Madison County,<br>Unincorporated Areas.                                                                                       |
| Silver Creek                    | Approximately<br>10,000 feet<br>downstream of<br>Lebanon Road at<br>county boundary | Approximately<br>3,000 feet<br>upstream of Silver<br>Creek Road | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Starting water-surface elevation was a known water-surface elevation taken from the St. Clair County study effective at the time of analysis. Redelineated in 2017 by STARR for TBD FIS. |
| Silver Creek<br>Tributary No. 1 | Confluence with<br>Silver Creek                                                     | Approximately<br>4,800 feet<br>upstream of Conn<br>Road         | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                                                                                                                     |
| Silver Creek<br>Tributary No. 2 | Confluence with<br>Silver Creek                                                     | Missouri Pacific<br>Railroad                                    | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b> FIS.                                                                                                                                        |
| Smith Lake<br>Tributary         | Immediately<br>upstream of East<br>Edwardsville Road                                | Approximately<br>1,150 feet<br>upstream of<br>Wesley Drive      | HEC-1<br>(USACE n.d.)                 | HEC-2<br>(USACE n.d.)                | March 1999                    | AE                       | Entire reach updated by LOMR's 99-05-<br>149P-170436 (Madison County,<br>Unincorporated Areas) and 99-05-149P-<br>170451(Wood River, City of).                                           |

| Flooding Source               | Study Limits<br>Downstream Limit                                             | Study Limits<br>Upstream Limit                                                           | Hydrologic<br>Model or<br>Method Used | Hydraulic<br>Model or<br>Method Used | Date<br>Analyses<br>Completed | Flood<br>Zone on<br>FIRM | Special Considerations                                                                                                                                                                            |
|-------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|-------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Smith Lake<br>Tributary No. 2 | Confluence with<br>Smith Lake<br>Tributary                                   | Approximately<br>2,200 feet<br>upstream of<br>confluence with<br>Smith Lake<br>Tributary | HEC-1                                 | StormCAD V8i<br>(Bentley 2015)       | 02/09/2018                    | N/A                      | LOMR 17-05-1811P resulted in all<br>recurrence intervals being fully contained in<br>a culvert, therefore no SFHA's appear on<br>FIRM. Discharges were maintained from<br>LOMR 99-05-149P-170451. |
| Stanley Creek                 | Confluence with<br>East Fork Wood<br>River                                   | Approximately<br>3,420 feet<br>upstream of 14th<br>Street                                | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                                                                                                                              |
| Sugar Fork                    | Confluence with<br>East Fork Silver<br>Creek                                 | Approximately<br>4,750 feet<br>upstream of Mayer<br>Road                                 | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                                                                                                                              |
| Tributary E                   | Approximately<br>4,100 feet<br>downstream of<br>Valley Drive                 | Approximately 50<br>feet upstream of<br>East Rosedale<br>Drive                           | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Starting water-surface elevations<br>determined by normal depth calculations.<br>Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                                             |
| Tributary F                   | Approximately<br>1,600 feet<br>downstream of<br>confluence of<br>Tributary G | Approximately<br>1,100 feet<br>upstream of<br>confluence of<br>Tributary G               | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Starting water-surface elevations<br>determined by normal depth calculations.<br>Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                                             |
| Tributary G                   | Confluence with<br>Tributary F                                               | Approximately 50<br>feet upstream of<br>Sitze Street                                     | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                                                                                                                              |
| Tributary X                   | Confluence with<br>West Fork Wood<br>River                                   | Madison/Macoupin<br>County Boundary                                                      | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                                                                                                                              |
| Tributary Z                   | Confluence with<br>Indian Creek                                              | Approximately 200<br>feet upstream of<br>Melody Lane                                     | HEC-1<br>(USACE 1973)                 | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b><br>FIS.                                                                                                                                              |
| West Fork Wood<br>River       | Confluence with<br>Wood River and<br>East Fork Wood<br>River                 | Approximately 800<br>feet upstream of<br>State Route 255                                 | HEC-HMS<br>(USACE<br>2017a)           | HEC-RAS 4.1<br>(USACE<br>2010b)      | 11/17/2019                    | AE w/<br>Floodway        | Floodway width reported is the width of<br>shaded floodway region on the FIRM.<br>Variation from modeled floodway width is<br>due to extension of floodway to landward<br>toe of levee.           |

| Flooding Source                                                                                 | Study Limits<br>Downstream Limit                         | Study Limits<br>Upstream Limit                                       | Hydrologic<br>Model or<br>Method Used  | Hydraulic<br>Model or<br>Method Used | Date<br>Analyses<br>Completed | Flood<br>Zone on<br>FIRM | Special Considerations                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|--------------------------------------|-------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| West Fork Wood<br>River                                                                         | Approximately 800<br>feet upstream of<br>State Route 255 | Approximately<br>2,200 feet<br>upstream of<br>Straube Lane           | HEC-1<br>(USACE 1973)                  | HEC-2<br>(USACE 1977)                | June 1979                     | AE w/<br>Floodway        | Redelineated in 2017 by STARR for <b>TBD</b><br>FIS. Stream stationing from 10/15/1981 FIS<br>increased by 1,604 feet to obtain<br>continuous stationing.                                                                          |
| Wood River                                                                                      | Confluence with<br>Mississippi River                     | Confluence of East<br>Fork Wood River<br>and West Fork<br>Wood River | HEC-HMS<br>(USACE<br>2017a)            | HEC-RAS 4.1<br>(USACE<br>2010b)      | 11/17/2019                    | AE w/<br>Floodway        | Floodway width reported is the width of<br>shaded floodway region on the FIRM.<br>Variation from modeled floodway width is<br>due to extension of floodway to landward<br>toe of levee or at confluence with<br>Mississippi River. |
| Various Zone A<br>Ponding Areas                                                                 | N/A                                                      | N/A                                                                  | N/A                                    | N/A                                  | Various                       | А                        | Flood hazards were digitized from pre-<br>countywide FIRMs.                                                                                                                                                                        |
| Various Zone AH<br>Areas not<br>included in<br>Interior Drainage<br>Studies<br>otherwise listed | N/A                                                      | N/A                                                                  | N/A                                    | N/A                                  | Various                       | АН                       | Flood hazards were digitized from pre-<br>countywide FIRMs. Includes LOMR<br>915059.                                                                                                                                               |
| Zone A Reaches<br>within Madison<br>County                                                      | Various                                                  | Various                                                              | Regression<br>Equations<br>(USGS 2004) | HEC-RAS 4.1<br>(USACE<br>2010b)      | December<br>2015              | A                        | Effects of hydraulic structures were not considered in the models.                                                                                                                                                                 |

|                              | Channel "r"   | Overhenk "r"  |
|------------------------------|---------------|---------------|
| Flooding Source              | Channel "n"   | Overbank "n"  |
| Belt Line Creek              | 0.040 - 0.065 | 0.035 - 0.080 |
| Black Creek                  | 0.040 - 0.065 | 0.035 - 0.080 |
| Cahokia Creek (lower)        | 0.035 - 0.065 | 0.070 - 0.120 |
| Cahokia Creek                | 0.035 - 0.070 | 0.050 - 0.140 |
| Canteen Creek                | 0.035 - 0.070 | 0.035 - 0.140 |
| East Alton Ditch             | 0.045 - 0.060 | 0.045 - 0.100 |
| East Fork Sherry Creek       | 0.035 - 0.070 | 0.050 - 0.140 |
| East Fork Silver Creek       | 0.035 - 0.070 | 0.050 - 0.140 |
| East Fork Wood River (lower) | 0.045 - 0.100 | 0.070 - 0.150 |
| East Fork Wood River         | 0.035 - 0.070 | 0.045 - 0.140 |
| Honeycut Branch              | 0.035 - 0.070 | 0.050 - 0.140 |
| Indian Creek (lower)         | 0.045 - 0.055 | 0.015 - 0.120 |
| Indian Creek                 | 0.035 - 0.070 | 0.050 - 0.140 |
| Joulters Creek               | 0.035 - 0.070 | 0.050 - 0.140 |
| Judys Branch                 | 0.060 - 0.109 | 0.030 - 0.100 |
| Judys Branch Tributary 5     | 0.075         | 0.030 - 0.100 |
| Judys Branch Tributary 5a    | 0.075         | 0.030 - 0.100 |
| Judys Branch Tributary 5b    | 0.064         | 0.030 - 0.100 |
| Judys Branch Tributary 9     | 0.072         | 0.030 - 0.100 |
| Judys Branch Tributary 9a    | 0.072         | 0.030 - 0.100 |
| Judys Branch Tributary 9b    | 0.063         | 0.030 - 0.035 |
| Judys Branch Tributary 10    | 0.063         | 0.030 - 0.100 |
| Judys Creek                  | 0.050 - 0.100 | 0.010 - 0.100 |
| Judys Creek Tributary B      | 0.082         | 0.070 - 0.100 |
| Laurel Branch                | 0.025 - 0.045 | 0.037 - 0.100 |
| Laurel Branch Tributary 1    | 0.030 - 0.040 | 0.030 - 0.080 |
| Lick Branch                  | 0.050         | 0.060 - 0.120 |
| Lindenthal Creek             | 0.025 - 0.050 | 0.035 - 0.100 |
| Lindenthal Creek Tributary 1 | 0.030 - 0.040 | 0.035 - 0.095 |
| Lindenthal Creek Tributary 2 | 0.030 - 0.045 | 0.035 - 0.120 |
| Lindenthal Creek Tributary 3 | 0.030         | 0.030 - 0.050 |
| Lindenthal Creek Tributary 4 | 0.035         | 0.037 - 0.045 |
| Mississippi River            | 0.050 - 0.140 | 0.035 - 0.070 |
| Mooney Creek                 | 0.030 - 0.035 | 0.030 - 0.075 |
| Mooney Creek Tributary 1     | 0.030 - 0.035 | 0.030 - 0.075 |
| Mooney Creek Tributary 2     | 0.030 - 0.035 | 0.030 - 0.075 |
| Paddock Creek                | 0.035 - 0.070 | 0.050 - 0.140 |
| Sherry Creek                 | 0.035 - 0.070 | 0.050 - 0.140 |
| Silver Creek                 | 0.035 - 0.070 | 0.050 - 0.140 |
| Silver Creek Tributary No. 1 | 0.035 - 0.070 | 0.050 - 0.140 |
| Silver Creek Tributary No. 1 | 0.035 - 0.070 | 0.050 - 0.140 |
| *Data not available          | 0.000 - 0.070 | 0.000 - 0.140 |

Table 13: Roughness Coefficients

\*Data not available

| Flooding Source              | Channel "n"   | Overbank "n"  |
|------------------------------|---------------|---------------|
| Smith Lake Tributary         | *             | *             |
| Smith Lake Tributary 2       | *             | *             |
| Stanley Creek                | 0.035 - 0.070 | 0.050 - 0.140 |
| Sugar Fork                   | 0.035 - 0.070 | 0.050 - 0.140 |
| Tributary E                  | 0.035 - 0.070 | 0.050 - 0.140 |
| Tributary F                  | 0.035 - 0.070 | 0.050 - 0.140 |
| Tributary G                  | 0.035 - 0.070 | 0.050 - 0.140 |
| Tributary X                  | 0.035 - 0.070 | 0.050 - 0.140 |
| Tributary Z                  | 0.035 - 0.070 | 0.050 - 0.140 |
| West Fork Wood River (lower) | 0.045         | 0.070 - 0.090 |
| West Fork Wood River         | 0.035 - 0.070 | 0.050 - 0.140 |
| Wood River                   | 0.045         | 0.070 - 0.090 |
| Zone A Riverine Studies      | 0.050         | 0.030 - 0.120 |

#### Table 13 : Roughness Coefficients (continued)

\*Data not available

#### 5.3 Coastal Analyses

This section is not applicable to this Flood Risk Project.

#### Table 14: Summary of Coastal Analyses

# [Not Applicable to this Flood Risk Project]

#### 5.3.1 Total Stillwater Elevations

This section is not applicable to this Flood Risk Project.

# Figure 8: 1% Annual Chance Total Stillwater Elevations for Coastal Areas

[Not Applicable to this Flood Risk Project]

# Table 15: Tide Gage Analysis Specifics

# [Not Applicable to this Flood Risk Project]

#### 5.3.2 Waves

This section is not applicable to this Flood Risk Project.

# 5.3.3 Coastal Erosion

This section is not applicable to this Flood Risk Project.

# 5.3.4 Wave Hazard Analyses

This section is not applicable to this Flood Risk Project.

**Table 16: Coastal Transect Parameters** 

[Not Applicable to this Flood Risk Project]

Figure 9: Transect Location Map

[Not Applicable to this Flood Risk Project]

#### 5.4 Alluvial Fan Analyses

This section is not applicable to this Flood Risk Project.

Table 17: Summary of Alluvial Fan Analyses

[Not Applicable to this Flood Risk Project]

 Table 18: Results of Alluvial Fan Analyses

[Not Applicable to this Flood Risk Project]

# **SECTION 6.0 – MAPPING METHODS**

#### 6.1 Vertical and Horizontal Control

All FIS Reports and FIRMs are referenced to a specific vertical datum. The vertical datum provides a starting point against which flood, ground, and structure elevations can be referenced and compared. Until recently, the standard vertical datum used for newly created or revised FIS Reports and FIRMs was the National Geodetic Vertical Datum of 1929 (NGVD29). With the completion of the North American Vertical Datum of 1988 (NAVD88), many FIS Reports and FIRMs are now prepared using NAVD88 as the referenced vertical datum.

Flood elevations shown in this FIS Report and on the FIRMs are referenced to NAVD88. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between NGVD29 and NAVD88 or other datum conversion, visit the National Geodetic Survey website at <u>www.ngs.noaa.gov</u>.

Temporary vertical monuments are often established during the preparation of a flood hazard analysis for the purpose of establishing local vertical control. Although these monuments are not shown on the FIRM, they may be found in the archived project documentation associated with the FIS Report and the FIRMs for this community. Interested individuals may contact FEMA to access these data.

To obtain current elevation, description, and/or location information for benchmarks in the area, please visit the NGS website at <u>www.ngs.noaa.gov</u>.

The datum conversion locations and values that were calculated for Madison County are provided in Table 19.

#### Table 19: Countywide Vertical Datum Conversion

#### [Not Applicable to this Flood Risk Project]

A countywide conversion factor could not be generated for Madison County because the maximum variance from average exceeds 0.25 feet. The studied reach of the Mississippi River spans multiple states and the river forms the actual border between adjacent counties. The Upper Mississippi River System Flow Frequency Study (UMRFFS) (USACE 2004) was originally performed using the NGVD vertical datum. Applying an average countywide datum shift to convert to NAVD88 would have resulted in a mismatch of elevations between counties. Therefore, in order to perform the most accurate vertical datum conversion possible and to maintain consistency in approach across county lines, the datum conversion for the Mississippi River was performed on a cross-section by cross-section basis, rather than by applying an average county-wide or stream-wide value. These calculations and the calculations for the vertical offsets for other reaches on a stream by stream basis are depicted in Table 20.

| Flooding Source               | Average Vertical Datum<br>Conversion Factor (feet) |
|-------------------------------|----------------------------------------------------|
| Belt Line Creek               | -0.056                                             |
| Black Creek                   | -0.154                                             |
| Cahokia Creek                 | -0.390                                             |
| Canteen Creek                 | -0.479                                             |
| East Alton Ditch              | 0.060                                              |
| East Fork Sherry Creek        | -0.371                                             |
| East Fork Silver Creek        | -0.467                                             |
| East Fork Wood River          | -0.133                                             |
| Honeycut Branch               | -0.370                                             |
| Indian Creek                  | -0.180                                             |
| Joulters Creek                | -0.339                                             |
| Judys Branch                  | -0.547                                             |
| Judys Branch Tributary 5      | -0.558                                             |
| Judys Branch Tributary 5a     | -0.558                                             |
| Judys Branch Tributary 5b     | -0.554                                             |
| Judys Branch Tributary 9      | -0.531                                             |
| Judys Branch Tributary 9a     | -0.520                                             |
| Judys Branch Tributary 9b     | -0.526                                             |
| Judys Branch Tributary 10     | -0.535                                             |
| Judys Creek                   | -0.513                                             |
| Judys Creek Tributary B       | -0.482                                             |
| Mississippi River (Rm 181.90) | -0.138                                             |
| Mississippi River (Rm 182.44) | -0.105                                             |
| Mississippi River (Rm 182.5)  | -0.092                                             |
| Mississippi River (Rm 182.52) | -0.092                                             |
| Mississippi River (Rm 182.53) | -0.092                                             |

#### Table 20: Stream-Based Vertical Datum Conversion

| Flooding Source               | Average Vertical Datum<br>Conversion Factor (feet) |  |  |
|-------------------------------|----------------------------------------------------|--|--|
| Mississippi River (Rm 182.9)  | -0.089                                             |  |  |
| Mississippi River (Rm 183.26) | -0.089                                             |  |  |
| Mississippi River (Rm 183.27) | -0.049                                             |  |  |
| Mississippi River (Rm 183.28) | -0.056                                             |  |  |
| Mississippi River (Rm 183.3)  | -0.050                                             |  |  |
| Mississippi River (Rm 183.38) | -0.032                                             |  |  |
| Mississippi River (Rm 183.98) |                                                    |  |  |
|                               | 0.010                                              |  |  |
| Mississippi River (Rm 184.56) | 0.098                                              |  |  |
| Mississippi River (Rm 185.18) | 0.125                                              |  |  |
| Mississippi River (Rm 185.76) | 0.131                                              |  |  |
| Mississippi River (Rm 186.36) | 0.128                                              |  |  |
| Mississippi River (Rm 186.82) | 0.105                                              |  |  |
| Mississippi River (Rm 187.41) | 0.092                                              |  |  |
| Mississippi River (Rm 188)    | 0.079                                              |  |  |
| Mississippi River (Rm 188.43) | 0.072                                              |  |  |
| Mississippi River (Rm 188.88) | 0.066                                              |  |  |
| Mississippi River (Rm 189.47) | 0.059                                              |  |  |
| Mississippi River (Rm 190.29) | 0.092                                              |  |  |
| Mississippi River (Rm 190.32) | 0.092                                              |  |  |
| Mississippi River (Rm 190.37) | 0.095                                              |  |  |
| Mississippi River (Rm 190.46) | 0.098                                              |  |  |
| Mississippi River (Rm 190.47) | 0.098                                              |  |  |
| Mississippi River (Rm 190.48) | 0.098                                              |  |  |
| Mississippi River (Rm 190.5)  | 0.098                                              |  |  |
| Mississippi River (Rm 190.64) | 0.098                                              |  |  |
| Mississippi River (Rm 190.79) | 0.102                                              |  |  |
| Mississippi River (Rm 190.81) | 0.098                                              |  |  |
| Mississippi River (Rm 190.82) | 0.098                                              |  |  |
| Mississippi River (Rm 190.85) | 0.102                                              |  |  |
| Mississippi River (Rm 191.36) | 0.115                                              |  |  |
| Mississippi River (Rm 191.92) | 0.128                                              |  |  |
| Mississippi River (Rm 192.41) | 0.141                                              |  |  |
| Mississippi River (Rm 192.91) | 0.154                                              |  |  |
| Mississippi River (Rm 193.28) | 0.164                                              |  |  |
| Mississippi River (Rm 193.79) | 0.167                                              |  |  |
| Mississippi River (Rm 194.16) | 0.171                                              |  |  |
| Mississippi River (Rm 194.63) | 0.167                                              |  |  |
| Mississippi River (Rm 194.97) | 0.164                                              |  |  |
| Mississippi River (Rm 195.56) | 0.164                                              |  |  |
| Mississippi River (Rm 196.09) | 0.161                                              |  |  |
| Mississippi River (Rm 196.48) | 0.164                                              |  |  |
| Mississippi River (Rm 196.82) | 0.164                                              |  |  |

Table 20 : Stream-Based Vertical Datum Conversion (continued)

| Flooding Source               | Average Vertical Datum<br>Conversion Factor (feet) |
|-------------------------------|----------------------------------------------------|
| Mississippi River (Rm 197.31) | 0.171                                              |
| Mississippi River (Rm 197.31) | 0.174                                              |
| Mississippi River (Rm 198.28) | 0.174                                              |
|                               |                                                    |
| Mississippi River (Rm 198.81) | 0.187                                              |
| Mississippi River (Rm 199.34) | 0.203                                              |
| Mississippi River (Rm 199.83) | 0.200                                              |
| Mississippi River (Rm 200.31) | 0.210                                              |
| Mississippi River (Rm 200.54) | 0.223                                              |
| Mississippi River (Rm 200.7)  | 0.223                                              |
| Mississippi River (Rm 200.85) | 0.217                                              |
| Mississippi River (Rm 201.29) | 0.226                                              |
| Mississippi River (Rm 201.85) | 0.226                                              |
| Mississippi River (Rm 202.5)  | 0.194                                              |
| Mississippi River (Rm 202.63) | 0.128                                              |
| Mississippi River (Rm 202.66) | 0.128                                              |
| Mississippi River (Rm 202.68) | 0.128                                              |
| Mississippi River (Rm 203.04) | 0.112                                              |
| Mississippi River (Rm 203.36) | 0.105                                              |
| Mississippi River (Rm 203.86) | 0.069                                              |
| Mississippi River (Rm 204.38) | 0.033                                              |
| Mississippi River (Rm 204.96) | -0.007                                             |
| Mississippi River (Rm 205.48) | -0.036                                             |
| Mississippi River (Rm 206.07) | -0.075                                             |
| Mississippi River (Rm 206.6)  | -0.118                                             |
| Mississippi River (Rm 207.12) | -0.154                                             |
| Mississippi River (Rm 207.72) | -0.187                                             |
| Mississippi River (Rm 208.29) | -0.220                                             |
| Mississippi River (Rm 208.89) | -0.253                                             |
| Mooney Creek                  | -0.439                                             |
| Paddock Creek                 | -0.344                                             |
| Sherry Creek                  | -0.369                                             |
| Silver Creek                  | -0.465                                             |
| Silver Creek Tributary No. 1  | -0.469                                             |
| Silver Creek Tributary No. 2  | -0.441                                             |
| Smith Lake Tributary          | 0.049                                              |
| Smith Lake Tributary No. 2    | 0.049                                              |
| Stanley Creek                 | -0.118                                             |
| Sugar Fork                    | -0.494                                             |
| Tributary E                   | 0.038                                              |
| Tributary F                   | 0.049                                              |
| Tributary G                   | 0.043                                              |
| Tributary X                   | -0.405                                             |
|                               | -0.403                                             |

Table 20 : Stream-Based Vertical Datum Conversion (continued)

| Flooding Source      | Average Vertical Datum<br>Conversion Factor (feet) |  |
|----------------------|----------------------------------------------------|--|
| Tributary Z          | -0.143                                             |  |
| West Fork Wood River | -0.257                                             |  |
| Wood River           | 0.101                                              |  |

# Table 20 : Stream-Based Vertical Datum Conversion (continued)

# 6.2 Base Map

The FIRMs and FIS Report for this project have been produced in a digital format. The flood hazard information was converted to a Geographic Information System (GIS) format that meets FEMA's FIRM Database specifications and geographic information standards. This information is provided in a digital format so that it can be incorporated into a local GIS and be accessed more easily by the community. The FIRM Database includes most of the tabular information contained in the FIS Report in such a way that the data can be associated with pertinent spatial features. For example, the information contained in the Floodway Data table and Flood Profiles can be linked to the cross sections that are shown on the FIRMs. Additional information about the FIRM Database and its contents can be found in FEMA's *Guidelines and Standards for Flood Risk Analysis and Mapping*, www.fema.gov/flood-maps/guidance-partners/guidelines-standards.

Base map information shown on the FIRM was derived from the sources described in Table 21.

| Data Type                                                 | Data Provider                                       | Data<br>Date | Data<br>Scale | Data Description                                                                     |  |
|-----------------------------------------------------------|-----------------------------------------------------|--------------|---------------|--------------------------------------------------------------------------------------|--|
| Aerial Imagery                                            | USDA FSA APFO<br>Aerial Photography<br>Field Office | 2019         | *             | Source data for Imagery<br>(USDA 2019)                                               |  |
| Municipal<br>Boundaries and<br>Transportation<br>Features | Madison County<br>Information<br>Systems            | 2016         | *             | Source data for Municipal<br>Boundaries and Transportation<br>features (ITMCG 2016a) |  |
| National<br>Hydrography<br>Dataset basic<br>features      | United States<br>Geological Survey                  | 2020         | 1:24,000      | Source data for Water<br>Features (USGS 2020)                                        |  |
| National Levee<br>Database                                | U.S. Army Corps of<br>Engineers                     | 2021         | *             | Source data for levees (USACE 2021)                                                  |  |
| Public Land Survey<br>System and County<br>Boundary       | Illinois State<br>Geological Survey                 | 2003         | *             | Source data for PLSS and<br>County Boundary (ISGS 2003)                              |  |
| Railroads                                                 | Madison County<br>Information<br>Systems            | 1995         | *             | Source data for Railroads<br>(MCIS 1995)                                             |  |

# Table 21: Base Map Sources

\*Data not available

# 6.3 Floodplain and Floodway Delineation

The FIRM shows tints, screens, and symbols to indicate floodplains and floodways as well as the locations of selected cross sections used in the hydraulic analyses and floodway computations.

For riverine flooding sources, the mapped floodplain boundaries shown on the FIRM have been delineated using the flood elevations determined at each cross section; between cross sections, the boundaries were interpolated using the topographic elevation data described in Table 22.

In cases where the 1-percent and 0.2-percent-annual-chance floodplain boundaries are close together, only the 1-percent-annual-chance floodplain boundary has been shown. Small areas within the floodplain boundaries may lie above the flood elevations but cannot be shown due to limitations of the map scale and/or lack of detailed topographic data.

The floodway widths presented in this FIS Report and on the FIRM were computed for certain stream segments on the basis of equal conveyance reduction from each side of the floodplain. Floodway widths were computed at cross sections. Between cross sections, the floodway boundaries were interpolated. Table 2 indicates the flooding sources for which floodways have been determined. The results of the floodway computations for those flooding sources have been tabulated for selected cross sections and are shown in Table 23, "Floodway Data."

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                | Source for Topographic Elevation Data              |                      |                        |                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------|----------------------|------------------------|-------------------------------|
| Community                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flooding Source                                                                | Description                                        | Vertical<br>Accuracy | Horizontal<br>Accuracy | Citation                      |
| Alhambra, Village of;<br>Alton, City of; Bethalto,<br>Village of; Collinsville,<br>City of; East Alton,<br>Village of; Edwardsville,<br>City of; Fairmont City,<br>Village of; Glen Carbon,<br>Village of; Glen Carbon,<br>Village of; Granite City,<br>City of; Grantfork, Village<br>of; Hamel, Village of;<br>Hartford, Village of;<br>Hartford, Village of;<br>Highland, City of;<br>Livingston, Village of;<br>Madison County;<br>Madison, City of; Marine,<br>Village of; New Douglas,<br>Village of; New Douglas,<br>Village of; Pierron,<br>Village of; Pierron,<br>Village of; Pierron,<br>Village of; Pontoon<br>Beach, Village of; St.<br>Jacob, Village of; Troy,<br>City of; Venice, City of;<br>Williamson, Village of;<br>Wood River, City of;<br>Worden, Village of | All mapped<br>flooding sources<br>in Madison<br>County not<br>otherwise listed | LiDAR data for<br>Madison County,<br>IL            | RMSE <<br>9.25cm     | Not<br>Provided        | IGDC<br>2014                  |
| Roxana, Village of; Wood<br>River, City of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Smith Lake<br>Tributary                                                        | Topographic<br>Maps: 1" = 200',<br>2-foot contours | *                    | *                      | FEMA<br>1999;<br>FEMA<br>2000 |

# Table 22: Summary of Topographic Elevation Data used in Mapping

\*Data not available

BFEs shown at cross sections on the FIRM represent the 1-percent-annual-chance water surface elevations shown on the Flood Profiles and in the Floodway Data tables in the FIS Report. Rounded whole-foot elevations may be shown on the FIRM in areas of ponding, and other areas with static base flood elevations.